

You just received an alien message from outer space. What does the first page mean?

Andreas Zwinkau
2015-08-19

Functional Programming User Group Karlsruhe

FunctionalFunctional
ProgrammingProgramming

in in DD

What language do you work in?

Popular Programming Languages
● Java
● C/C++
● C#
● Python
● PHP
● JavaScript
● Perl
● Shell
● Assembly

Fortran? Cobol? ABAP?

What language would you want to
work in?

Desired Programming Languages

● Haskell
● Scala
● Rust
● Next JavaScript version
● Clojure

...

Do you know D?

Who has heard of the D programming language?

Who wrote at least a line of D code?

Anything larger?

Walter Bright

Wrote first C++ to native
code compiler

Wrote Empire on the PDP-10

Pro Compiler Writer

Creator of D (1999)

D design goals

Modern convenience.

Modeling power.

Native efficiency.

D1 had issues

Two standard libraries (Phobos vs Tango)

– Phobos feels like libc

– Tango feels like java.*

Proprietary Compiler Backend

– GDC lagging behind

Resolved with D2 in 2007

Andrei Alexandrescu

Author of „Modern C++
Design“ and „The D
Programming Language“

C++ template programming
Guru

Research scientist at Facebook

Co-designer of D

D in the real world?

● Facebook has C preprocessor „warp“ written in D

● Sociomantic (Berlin) does real-time ads bidding

● Remedy Games (Max Payne, Alan Wake) is playing
with it

more on http://wiki.dlang.org/Current_D_Use

http://wiki.dlang.org/Current_D_Use

D design goals

Modern convenience.

Modeling power.

Native efficiency.

D is not small/simple, but „comprehensive“.

D is C++ done right without the baggage.

D: Modern convenience (inference)

void main() {

 auto arr = [1, 2, 3.14, 5.1, 6];

 auto dictionary = ["one" : 1,

 "two" : 2, "three" : 3];

 auto x = min(arr[0], dictionary["two"]);

}

auto min(T1, T2)(T1 lhs, T2 rhs) {

 return rhs < lhs ? rhs : lhs;

}

D: Modern convenience (res. mgmt.)

import std.stdio;

class Widget { }

void main()

{

 auto w = new Widget; // GC

 scope(exit) { writeln("Exiting main."); }

 foreach (line; File("text.txt").byLine())

 {

 writeln(line);

 } // File closed deterministically at scope's end (RAII)

 writeln();

}

D: Modern convenience (builtin arrays)

import std.range, std.stdio;

void main()

{

 ulong lines = 0, sumLength = 0;

 foreach (line; stdin.byLine())

 {

 ++lines;

 sumLength += line.length;

 }

 writeln("Average line length: ",

 lines ? cast(double) sumLength / lines : 0.0);

}

D: Modeling power (multi-paradigm)

The best paradigm is to
not impose something at
the expense of others. D
offers classic
polymorphism, value
semantics,
functional style,
generics, generative
programming, contract
programming, and more—
all harmoniously
integrated.

D: Modeling power (concurrency)

D offers an innovative approach to concurrency [and
parallelism], featuring true immutable data, message
passing, no sharing by default, and controlled mutable
sharing across threads.

D: Modeling power (small and large)

From simple scripts to large
projects, D has the breadth to
scale with any application's
needs: unit testing,
information hiding, refined
modularity, fast compilation,
precise interfaces.

D: Native efficiency.

D compiles naturally to
efficient native code.

D: Native efficiency (FFI, assembly)

D is designed such that most "obvious" code is fast
and safe.

Easy to call into C. (Possible to call into some C++)

Inline assembly.

D: Native efficiency.

The @safe,
@trusted, and
@system function
attributes allow the
programmer to best
decide the safety-
efficiency
tradeoffs of an
application, and
have the compiler
check for
consistency.

What is „Functional Programming“?

What is cool about Functional?

Anticipated „Coolness“

● If it compiles, it works
● Easy to parallelize
● Better abstractions
● Easier to reason about
● Discourages side effects
● Easier to test
● Easier reuse
● Clean and elegant

FP is Immutable Data

OO is about encapsulating and hiding state,
FP is about no mutable state.

Implies Garbage Collection

FP is Pure Functions

Functions must not change on global state.

They might depend on global state, but that state is
immutable.

FP is First-Class Functions

Dynamically create new functions.

This enables higher-order functions and currying.

FP is not about ...

Monads
Lazyness
Static Typing
Type Inference
Recursion
Referential Transparency

Functional Programming is

● Immutable Data

● Pure Functions

● First-Class Functions

imho

What does D provide?

D has anon. functions and delegates

auto square = function int(int x)

 { return x * x; }

int exponent = 2;

auto square = delegate int(int x)

 { return pow(x, exponent); }

auto square = (int x) => x * x;

D std lib has standard FP tools

import std.algorithm: map, filter, reduce;

import std.functional: curry, memoize,
compose;

D const is transitive

class Foo {

 public Bar b;

}

baz(const Foo f) {

 auto b2 = f.b; // b2 const as well

}

const vs immutable

const Foo a;

 Foo b;

immutable Foo c;

void foo(const Foo x);

foo(a);

foo(b);

foo(c);

D has pure functions

● cannot read or write global or static (mutable) state
● cannot call impure functions (IO,extern,etc).

Is that good enough?

Problems with purity
„Programming with pure functions will involve more copying
of data, and in some cases this clearly makes it the incorrect
implementation strategy due to performance
considerations. As an extreme example, you can write a pure
DrawTriangle() function that takes a framebuffer as a
parameter and returns a completely new framebuffer with the
triangle drawn into it as a result. Don’t do that.“

–John Carmack, #AltDevBlog 2012

strongly vs weakly pure

pure Foo bar(Foo f); // weakly pure

pure Foo bar(const Foo f); // strongly pure

class Foo {

 public TheWorld world;

 ...

}

Weakly pure is useful.

pure void DrawTriangle(Framebuffer fb, ...);

A weakly pure DrawTriangle is guaranteed to only
modify the framebuffer it takes as a parameter.

pure has pragmatic loopholes

● can throw exceptions

● can terminate the program

● can allocate memory

● can do impure things in debug statements

D can do Functional Programming

✔ Immutable Data

✔ Pure Functions

✔ First-Class Functions

D can do lazy

void log(lazy string dg) {

 if (logging)

 fwritefln(logfile, dg());

}

void f(Foo x) {

 log("Enter f() with x = "~toString(x));

}

Haskell's lazy lists in D?

D champions „ranges“.

sort(1) in D

void main() {

 stdin

 .byLine(KeepTerminator.yes)

 .map!(a => a.idup)

 .array

 .sort

 .copy(stdout.lockingTextWriter());

}

Monads in D

See C++ http://bartoszmilewski.com/2011/07/11/monads-in-c/

Where typeclasses fail ...

… subtly changing from functional to generic programming ...

Think Collections

ArrayList, LinkedList, Queue, Set, Infinite Lists, etc

Can you
● insert at the front/back? (Not both for queues)
● iterate front/back/both? (Not all for LinkedList)
● get the length? (Not for infinite lists)
● is it thread-safe?

Lets make Interfaces

● FrontInsertable
● BackInsertable
● ForwardIterable
● BackwardIterable
● RandomAccessible
● HasLengthInterface
● ThreadSafeI

What about combinations?

Interfaces, concepts, traits, typeclasses
have a problem: Names.

interface
FrontBackInsertableRandomAccessibleWithLength
extends
 FrontInsertable,
 BackInsertable,
 RandomAccessible,
 HasLengthInterface

class ArrayList implements
FrontBackInsertableRandomAccessibleWithLength

Oh and … is it serializable? Cloneable? Comparable?

Challenge: chunk

Write a generic function chunk.
Takes a Collection<T> and an int n as input.
Outputs a Collection<Collection<T>>,
where every n items are grouped together.

Example: [1,2,3,4,5,6] => [[1,2],[3,4],[5,6]]

Should work with ArrayList, LinkedList, Queue, etc

D has static-if to the rescue

C!(C!T) chunk(C,T)(C!T input,int n)
if (hasRandomAccess(C)) {
 // use slices of C => nearly no allocation
}

C!(C!T) chunk(C,T,int n)(C!T input)
if (isForwardIterable(C)) {
 // pop elements one by one
 static if (isReferenceType(T)) {
 } else {
 static assert (isCopyable(T));
 }
}

I know a lot of the programming
community is sold on exclusive
constraints (C++ concepts, Rust traits)
rather than inclusive ones
(D constraints). What I don't see is a
lot of experience actually using
them long term. They may not turn
out so well.

–Walter Bright

D can do functional

… and all the other paradigms

D is cool.

● Easy to parallelize
● Great at (zero-cost) abstractions
● Annotations to make it easier to reason about
● Forbid side effects selectively
● Encourages to use builtin unit testing
● Generic programming for easy reuse
● Clean and elegant

Try D!

Go to http://dlang.org

Downloads for Win, OS X, Ubuntu, FreeBSD, etc

For help ask at http://forum.dlang.org/

http://dlang.org/
http://forum.dlang.org/

Want more? Really?

@safe: undefined behavior forbidden

● No casting from a pointer type to any type other than void*.

● No casting from any non-pointer type to a pointer type.

● No modification of pointer values.

● Cannot access unions that have pointers or references overlapping with other types.

● Calling any system functions.

● No catching of exceptions that are not derived from class Exception.

● No inline assembler.

● No explicit casting of mutable objects to immutable.

● No explicit casting of immutable objects to mutable.

● No explicit casting of thread local objects to shared.

● No explicit casting of shared objects to thread local.

● No taking the address of a local variable or function parameter.

● Cannot access __gshared variables

inline unittests

int half(int x) {
 return x*2;
}

unittest {
 assert (half(84) == 42, „half is broken“);
}

Contracts

int half(int x)
in { assert (x > 42); }
out (result) { assert (result*2 == x); }
body {
 return x/2;
}

scope()

auto fh = open(foo);

scope (exit) fh.close();

fh.read();

Image sources in order of appearance:

https://www.flickr.com/photos/astrid/8886371211/

https://www.flickr.com/photos/randar/15036720742/

https://www.flickr.com/photos/51035610542@N01/6
868746106/
https://www.flickr.com/photos/tombricker/80075458
19/
https://www.flickr.com/photos/slack12/316774124/

https://www.flickr.com/photos/jabb/5582573164/

https://www.flickr.com/photos/astrid/8886371211/
https://www.flickr.com/photos/randar/15036720742/
https://www.flickr.com/photos/51035610542@N01/6868746106/
https://www.flickr.com/photos/51035610542@N01/6868746106/
https://www.flickr.com/photos/tombricker/8007545819/
https://www.flickr.com/photos/tombricker/8007545819/
https://www.flickr.com/photos/slack12/316774124/
https://www.flickr.com/photos/jabb/5582573164/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61

