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Abstract

We present our compiler intermediate representation FIRM. Pro-
grams are always in SSA-form enabling a concise graph-based rep-
resentation. We argue that this naturally encodes context informa-
tion simplifying many analyses and optimizations. Instructions are
connected by dependency edges relaxing the total to a partial or-
der inside a basic block. For example alias analysis results can be
directly encoded in the graph structure.

The paper gives an overview of the representation and focuses
on its construction. We present a simple construction algorithm
which does not depend on dominance frontiers or a dominance
tree. We prove that for reducible programs it produces a program in
pruned and minimal SSA-form. The algorithm works incrementally
so optimizations like copy propagation and constant folding can be
performed on-the-fly during the construction.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Retargetable Compilers

General Terms Intermediate Representation, SSA

1. Introduction

A compiler is usually separated into front end, for reading the
source code (like a programming language or bytecode), and back
end, for emitting target code (like machine code or bytecode).
In between, the program is stored in an intermediate representa-
tion (IR), which allows optimizations to be independent of source
and target language. Hence, multiple front and back ends all profit
from the same optimizations. Thus, the main goal for the design of
an intermediate representation is to support the optimizations using
it.

The heart of an intermediate representation are operations, e.g.
subtractions, comparisons, or conditional jumps. Operations con-
sume and produce values: raw data elements. A variable is a named
storage place for values. Storing a value into a variable is also
called assignment. State of the art IRs are in Static Single Assign-
ment (SSA) form, where each variable is assigned exactly once.
This makes analysis more efficient, because every value (statically)
comes from exactly one single definition. In contrast, an optimiza-
tion on a non-SSA representation needs to process a vector of defi-
nitions.

Compiler optimizations can be classified into three kinds. The
common explicit optimization approach is to analyse and transform
the program iteratively, e.g. according to equalities like x*2 = x+x
= x<<1. However, this results in the well-known phase-ordering
problem [20], which stems from the fact that transformations en-
able or inhibit each other, such that there is no globally optimal
order of optimizations. Additionally, an implementation may per-
form implicit optimizations, which are not part of a certain com-
piler phase. For example, our LIBFIRM implementation performs
constant folding, e.g. 2*3 — 6, during the construction of an arith-
metic operation, without any effort from the frontend, which uses
the construction API. The downside of implicit optimization is that
they are local by nature, so they can be performed in constant time.
Therefore, a more powerful optimization is usually done explic-
itly anyways. A third kind are inherent optimizations, which “ab-
stract away” inessential aspects of the program during the IR con-
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struction, because these aspects cannot be represented in the IR.
For example, in FIRM dead code elimination, which removes un-
used operations, is inherent, because unused operations are just not
reachable by a walk over the program graph. In contrast, an op-
timization pass working on an instruction list representation still
encounters unused operations and requires a special optimization
pass for dead code elimination. Inherent optimizations are the most
desirable kind, because they neither succumb to the phase-ordering
problem, nor are they limited to local optimizations.

The IR’s purpose (supporting optimization) is realized by three
properties, by which the quality of an IR should be measured:

1. Optimizations are inherent.
2. Analysis is efficient.

3. Transformation is simple.

While analysis and transformation are the basic parts of any opti-
mization pass, the first property aims to perform as many optimiza-
tions as possible during the construction and render explicit opti-
mization unnecessary. However, we cannot imagine an IR, which
performs all known optimizations either implicitly or inherently, so
all three properties are useful to judge IRs.

In this document, we present our IR called FIRM, which rep-
resents program graphs as explicit dependency graphs in SSA-
form. A quality of FIRM is that even dependencies due to mem-
ory accesses are explicitly modelled. In contrast, most IRs encode
these dependencies through an implicit operation schedule, but this
approach introduces pseudo-dependencies and requires additional
analysis overhead for optimizations that want to change the order
of memory accesses. Our contributions are

e a thorough description of FIRM and its design decisions,

e adetailed description of an incremental SSA construction algo-
rithm, which does not rely on dominance information, and

e a proof that the SSA construction algorithm constructs pruned
SSA-form for all programs and minimal SSA-form for re-
ducible programs.

Section 2 presents the structure and semantics of FIRM. Then,
Section 3 considers SSA-form and its construction in detail. Fi-
nally, we present related work, future work and our conclusions.

2. FIRM

FIRM was initially built in 1996 for the Sather-K compiler Fiasco
which manifests in its name: Fiasco’s Intermediate Representation
Mesh. Later, FIRM was extracted to the separate open-source li-
brary LIBFIRM [18]. The library can be used with the Java- and
C-frontends by the Edison Design Group. Additionally, there are
open-source frontends for C [9] and Java bytecode [4].

A FIRM program consists of a set of entities which are objects
that will occur in the output/binary. This includes functions, global
variables, string and number literals, struct initializers, classes, and
vtables. To support this, firm contains a type system modeling
nested structs and class hierarchies and function types. Code inside
functions is modeled in graphs as described below.



Workshop on Intermediate Representations

2.1 SSA-Graphs

FIRM is based on static single assignment (SSA) form which is
defined as follows:

Definition 1. A program is in SSA-form iff each variable has
exactly one definition.

Translating a program into SSA-form involves the renaming
of different assignments to the same variable and the insertion of
special ¢-functions at places where different assignments meet.

Since each variable has only one well-known definition, SSA-
form allows a new style of intermediate representations: Instead of
reading an operand from a variable we can directly link to the oper-
ation producing this value. Thus, the concept of variables becomes
unnecessary. FIRM follows the sea of nodes idea by Click [7, 8]
that makes dependencies between values explicit. In contrast to an
instruction list representation, this implies that there is no implicit
schedule and no total order of operations, which leads to a graph-
based representation. A total ordering is not calculated until the
instruction scheduling phase in the backend.

2.2 Explicit Dependency Graphs

FIRM-graphs were first described by Trapp [19]. While the details
have changed in the last decade, his definition still fits.

Definition 2 (explicit dependency graph). An explicit dependency
graph (EDG) is a directed, marked graph. The nodes are marked
with a signature of ¥ g pa, which is their operation. The nodes have
ordered in- and outputs. Their number and order correspond to the
parameters and results of the respective term in X gpc. The in- and
outputs are marked with types of Tepa. Edges connect outs with
ins of the same type. The signatures > gpc and types Tepc are
shown in Table 1.

A function in FIRM is represented by a program graph. Every
operation is a node. The edges denote common dependencies, e.g.
data or control dependencies. Since FIRM models dependency in-
stead of flow edges, the program graph is reversed compared to the
common data flow representation. Nodes may produce multiple re-
sults combined in a tuple value. There is a special instruction called
Proj which extracts values from tuples.

If there’s a dependency between two nodes then there is always
a path between them. Hence, the node semantics are referentially
transparent for simple operations like Addition or Subtraction.
However, Phi-nodes for example are an exception, because the
behavior that all Phi-nodes must be evaluated simultaneously at
beginning of a basic block is not represented with edges.

Most scalar variables can easily be brought into SSA-form.
However, there may be additional data structures on the heap and
some variables might be affected by aliasing effects. If the aliasing
relations of a variable are unknown then the variable is simply
not represented in SSA-form. Instead every read-/write-access to
the variable is represented with an explicit Load-/Store-node. The
order of these operations is important. To model this we introduce a
new SSA-value called memory which represents aliased variables
and heap data. Load- and Store-nodes consume a memory value
and produce a new one.

This chaining through the memory value can be stricter than
necessary. However, if we know that some operations are not de-
pendent on each other because of aliasing information or because
they only read memory, then we can represent this in the graph: we
let all such operations use the same memory value as input, their
outputs are combine in a Sync-node, which forms a barrier for sub-
sequent potentially aliasing operations.

There have been proposals to directly model aliased variables in
SSA-form [6] by virtual instructions updating a value at places with
potential aliasing effects. We do not use this approach, because in
program-parts with aliasing effects we expect optimisation oppor-
tunities to be very limit or non-existent, while Load- and Store-
operations to the same address without aliasing will get promoted
to SSA-values by scalar replacement.
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Figure 1. Example FIRM graph with control flow

An example FIRM graph is shown in Figure 1. It shows the
FIRM representation of a simple function:

int abs(int x) {

if (x < 0) {
X = -X;
}

return Xx;

}

There are four basic blocks. The Start Block contains Start,
where all values including function parameters originate. The sec-
ond block contains the comparison with the zero Constant. The
conditional jump is modeled with a Cond node which produces a
tuple containing controlflow depending on the condition. The third
block represents the body of the if-statement, where the value is
negated. The last block contains the end of the function, where the
value of variable x is returned. The Return operation references a
Phi node, because the operand depends on the control flow. Every
block (except the start block) references the operation, where con-
trol flow comes from (red). For example, the block with the Return
operation points to the Proj of the Cond and to the Jmp. These con-
trol dependency edges form a “reversed CFG”. The Return node
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Figure 2. Example FIRM graph with memory operations

additionally references (blue) the initial memory state produced by
Start.

A second example dominstrating memory-values is shown in
Figure 2:

void swap(int *x, int *y) {
int t = *x;
*X = *y;
Y=Y

}

The initial memory values is produced by the Start-node. Since
the two Load- operations for the *x and xy expression can safely
happen in parallel they both use the same memory value. They both
produced the loaded value and a new memory value. The memory
values are combined with a Sync node which which is then used by
the Store nodes from the *x < and *y < expressions. The variable
t was eliminated by copy-propagation. In fact a node for copying
values doesn’t even exist.

2.3 On-the-fly Optimizations

As already mentioned, the construction of an IR may include im-
plicit and inherent optimizations. FIRM construction optimizes as
follows:
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Arithmetic Simplification (implicit) A node constructor is able to
detect local simplifications, like x-x = 0, and returns a node,
which represents the simplified expression.

Common Subexpression Elimination (implicit) This optimiza-
tion merges duplicate expressions. In FIRM this is also done
implicitly during node creation. For example, before a new
Const 1 node is created, the constructor checks if there is al-
ready a Const 1 in the graph and then returns this instead.

Constant Folding (implicit) This optimization exchanges constant
expressions for their resulting value, e.g. 2*3 is optimized to 6.
Due to the mostly referentially transparent nature of operations,
the 2*3 expression is easily detected in FIRM. FIRM performs
this optimization during every node creation, so when a fron-
tend calls the constructor for the Add node with the two Const
operands a Const 6 is constructed internally and returned in-
stead of an Add.

Copy Propagation (inherent) This optimization removes unneces-
sary assignments, e.g. x = y. As FIRM has no local variables,
there are no assignments between them either. A copy operation
doesn’t even exist in the representation. If x is a global variable,
then the FIRM graph represents access with a Store/Load oper-
ation. However, if x is local, then its users will just reference
the defining of y directly.

Dead Code Elimination (inherent) Since a FIRM node can only
be accesses through its users an unused node is not seen, when
walking the program graph. A garbage collection mechanism
frees the memory occupied by dead code.

All these optimizations are only performed with local analysis to
keep the graph construction efficient. This forces them to be con-
servative. There may be additional optimization possibilities de-
tectable by optimistic dataflow analysis. Imagine for example, un-
reachable code elimination which is not reached because some con-
ditional branch will never be taken. The local analysis may fail to
detect this when the unreachable code contains further definitions
influencing the condition of the branch. FIRM contains such opti-
mistic optimizations as a separate pass.

3. Incremental SSA-Construction

SSA-form was invented by Rosen, Wegman, and Zadeck [16] and
became popular after Cytron et al. [10] presented an efficient algo-
rithm for constructing it. This algorithm can be found in any text-
book presenting SSA and is used by the majority of compilers.

Cytrons algorithm is based on dominance frontiers which re-
quire a dominance tree and therefore a complete control flow graph
to be built [17]. This in turn requires a traditional non-SSA-form
representation of the complete program to be available. This is fine
for compilers using SSA-form only for some of their optimization
passes. However, in our setting it would be desirable to directly
build the SSA-form while parsing the program.

Fortunately, there is a little-known construction algorithm by
Click [8] which is efficient and does not depend on the dominance
tree, so it can be used while the control flow graph is under con-
struction. In the following, we give a detailed description of the
algorithm and prove that it constructs pruned SSA-form for all pro-
grams and minimal SSA-form for reducible programs.

3.1 The Construction Algorithm

We use the usual definitions of the program being represented in
a control flow graph (CFG) built from basic blocks connected by
edges representing possible jumps between basic blocks. There are
distinct entry and exit blocks through which all control flows into
and out of the graph.

In the following we assume that all variables are enumerated.
Each basic block has an array variables recording for each variable-
number the operation with the latest assignment to that variable.
The array is initialized with null entries for variables where the
latest assignment is unknown yet. We process the operations in a
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basic block in the order provided by the source program. When an
assignment is encountered the corresponding operation is recorded
in the variables array. When a variable v is read, then the last defin-
ing operation is looked up in the array. If the last assignment is
not yet known, then it must be in another block. If we know that
there will only be one predecessor block we look the definition up
at this block. Otherwise, we pessimistically create a ¢-function for
v since we might not have added all predecessors to the block yet
and therefore we might not be able to determine the latest assign-
ment to v. For the same reasons we do not attempt to determine the
arguments of the ¢-function yet. This ¢-function is recorded as the
last definition for v in the variables array.

There’s a special case for the start block: If we did not find a
definition there, then the variable must have been used uninitialized
and we create and record an unknown value.

Once we finished constructing all basic blocks, the arguments
for the ¢-functions are determined by looking into the variables
arrays of the corresponding predecessor blocks. This can lead to the
creation of further ¢-functions whose arguments can be determined
immediately. To avoid running in endless cycles, we record the ¢-
function in the variables array immediately after its creation before
we determine the arguments.

For a construction example consider the pseudocodes Algo-
rithm 1 and Algorithm 2 and the following C program fragment.

int foo(int x) {
do {
if () {

} .tle.lse {

}
} while (...);
return x;

}

Let the varnum of x be v,. The construction of the do-while
loop is: First, a finish-block, where the program will proceed af-
ter the loop, and a condition-block, where the loop condition will
be put, are built. Then a body-block is constructed and a recur-
sive processStatement handles the loop body, where continue will
jump to the condition-block and break to the finish-block. After-
wards, the condition is processed in the condition-block and makes
a conditional jump to the finish- and the body-blocks.

Similarly, the if statement constructs a then-, an else-, and a
finish-block. The condition is processed (using short-circuit evalu-
ation).

The return statement itself is easy to process, but consider the
readVariable(currentBlock, v,) call for the expression x. As there
is no definition of x in return-block, there are a recursive calls
through the condition-block and the if-finish-block, which has two
predecessors. Therefore, a vo = ¢ is inserted and the predecessors
are inspected. Another v1 = ¢o is inserted into the if-condition
block (the loop-body-block). One argument is the initial v2 from
the start block’s definition of X, the other one is vg from a previous
loop iteration, so vi = ¢(v2, vo). Now, the recursion returns to the
vo block and finishes it, so vo = ¢(v1,v1), which results in the
graph shown in Figure 3(a).

3.2 Reducing the Number of ¢-Functions

The algorithm described so far places a ¢-function at all join-points
in the control flow graph. This is correct but more conservative than
necessary. The reason for the conservative ¢-placement is the un-
certainty of a block’s predecessors during CFG construction. How-
ever during construction we know the predecessors for many blocks
in advance. Typical examples are if-statements and structured loops
where we know the exact predecessor for the then- and else-part or
the loop-body. We use this knowledge to improve our construction
algorithm: Blocks with known predecessors are called mature other
blocks immature.
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Vg < ... Vg — ...

v1 +— ¢(v2,v0)

vo +— ¢(v1,v1)
NG N

(a) Unoptimized. (b) Minimal SSA-form.

Figure 3. Control flow dependency graphs for program example.

proc writeVariable(block, varnum, node):
block.variables[varnum] < node

internal proc setPhiArguments(phi):
phiArgs — []
for pred in phi.block.preds:
arg < readVariable(pred, phi.varnum)
phiArgs.append(arg)
phi.setArguments(phiArgs)
RemoveUnnecessaryPhi(phi)

proc readVariable(block, varnum):
if block.variables contains varnum:
return block.variables[varnum]
if block.matured:
if Iblock.preds| = 0: # startblock
return new Unknown(block)
else if Iblock.preds| = 1:
return readVariable(block.preds[0], varnum)
phi < new Phi(block)
phi.varnum « varnum
writeVariable(block, varnum, phi);
if block.matured:
setPhiArguments(phi)
return phi

proc matureBlock(block):
for phi in block.phinodes:
setPhiArguments(phi)

block.matured « true

Algorithm 1: Value identification and ¢-creation

A newly created basic-block is immature. In an immature block
we always place temporary ¢s like already described. As soon as all
predecessor blocks have been added and processed we mature the
block. This involves determining the arguments for all ¢-functions
in the block. If we have to create additional ¢-functions in a mature
block, we will immediately calculate their arguments. Obviously
the ¢ can be omitted if a mature block has exactly 1 predecessor.

A second simplification called REMOVEUNNECESSARYPHI is
applied when all arguments of a ¢-function have been determined:
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(a) If Statement (b) While Statement

Figure 4. Tllustration of construction procedures.

1. If all arguments of a ¢-function are the same value s or the ¢-
function itself, then we remove the ¢-function and let all users
directly use s. We call such a ¢-function obviously unnecessary.

2. When we removed a ¢-function p, then we recursively try
to apply this simplification rule with all (former) users of p,
because they may have become obviously unnecessary due to
the removal of p.

Algorithm 1 shows pseudocode for the described algorithm.
Due to the REMOVEUNNECESSARYPHI rule, the program of Fig-
ure 3(a) can be further optimized: vo is immediately replaced by
v1. The ¢-function defining v1, which now reads ¢(vz, v1), is opti-
mized recursively. Figure 3(b) shows the resulting program which
is in minimal SSA-form.

Some typical scenarios when constructing an SSA-form pro-
gram from an AST are shown in Algorithm 2. The resulting control
dependency graphs are illustrated in Figure 4.

3.3 Quality of the Algorithm

Having too many ¢-functions in an SSA-program results in an big-
ger number of operations overall but more importantly it can ob-
scure information available to optimizations. This happens when
seemingly different values always have the same value in real-
ity. So a good SSA-construction algorithm should create as few
¢-functions as possible. There are two sources of extraneous ¢-
functions:

1. There might be ¢-functions that no one references.

2. There might be ¢-functions where all arguments effectively
have the same value at runtime.

While there are situations in which our algorithm produces extra-
neous ¢-functions, in the majority of the cases it does not. As the
next section proves this depends on the reducibility of the programs
control flow graph. Intuitively: For goto-free programs we do not
produce extraneous ¢-functions. Programs in languages like Java,
Javascript or Python always fall into this class.

3.3.1 Pruned SSA-form

A program is said to be in pruned SSA-form [5] if each ¢-function
has at least one user. We only create ¢-functions as a result of a
situation where someone will use it: Either a variable being read
or another ¢-function needing an argument. So our construction
naturally produces a program in pruned SSA-form.

3.3.2 Minimal SSA-form

Minimal SSA-form requires that ¢-functions for a variable v only
occur at basic blocks where different definitions of v meet for the
first time. Cytron’s formal definition is based on the following two
terms:
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proc processExpression(block, [x < E]):
node < processExpression(E);
writeVariable(block, vnum(x), node);
return node

proc processExpression(block, [[x]):
return readVariable(block, vnum(x));

proc processStatement(block, [S1; S2] ):
blockl « processStatement(block, S1)
block2 < processStatement(blockl, S2)
return block?2

proc processStatement(block, [while(C) S| ):
jump < new Jump(block);
headerBlock < new Block();
headerBlock.addPredecessor(jump);

bodyBlock < new Block();

afterBlock < new Block();
processCondition(headerBlock, C, bodyBlock, afterBlock);
matureBlock(bodyBlock);

afterBody < processStatement(bodyBlock, S);

jump «— new Jump(afterBody);
headerBlock.addPredecessor(jump);
matureBlock(headerBlock);

matureBlock(afterBlock);
return afterBlock;

proc processStatement(block, [if(C) S1 else S2] ):
trueBlock < new Block();
falseBlock < new Block();
afterBlock < new Block();
processCondition(block, C, trueBlock, falseBlock);
matureBlock(trueBlock);
matureBlock(falseBlock);

trueEnd « processStatement(trueBlock, S1);
jump < new Jump(trueEnd);
afterBlock.addPredecessor(jump);

falseEnd «— processStatement(falseBlock, S2);
jump <« new Jump(falseEnd);
afterBlock.addPredecessor(jump);

matureBlock(afterBlock)
return afterBlock

Algorithm 2: Typical scenarios when constructing from an AST

Definition 3 (path convergence). Two non-null paths Xo —1 X ;
and Yo — 1 Yi are said to converge at a block Z iff the following
conditions hold:

Xo # Yo; (D
Xy =2 = Yi; )
(X;=Y) = (j=JVEk=K). 3)

Definition 4 (necessary ¢-function). A ¢-function for variable v
is necessary in block Z iff two non-null paths X —% Z and
Y -t Z converge at a block Z, such that the blocks X and Y
contain assignments to v.

A program with only necessary ¢-functions is in minimal SSA-
form. The following is a proof that our algorithm with the sim-
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plification rule from Section 3.2 produces minimal SSA-form for
reducible programs.

We say a block A dominates a block B if every path from the
entry block to B passes through A. We say A strictly dominates
B if A dominates B and A # B. Each block C' except entry has
a unique immediate dominator idom(C'), i.e. a strict dominator of
C' which does not dominate any other strict dominator of C'. The
dominance relation can be represented as a tree whose nodes are the
basic blocks with a connection between immediately dominating
blocks.

Definition 5 (reducible flow graph). A (control) flow graph G is
reducible iff for each cycle C of G there is a node of C which
dominates all other nodes in C.

We now assume that our construction algorithm finished and
produced a program with a reducible CFG [13]. We observe that
the simplification rule REMOVEUNNECESSARYPHI was applied at
least once to each ¢-function with its current arguments. This is
because we apply the rule each time a ¢-function’s parameters are
set for the first time. In the case that a simplification on another
operation leads to a change of parameters the rule is applied again.
Furthermore, our construction algorithm fulfills the following prop-
erty:

Definition 6 (SSA-property). In an SSA-form program a path from
a definition of an SSA-value for variable v to its use cannot contain
another definition or ¢-function for v. The use of the operands of
¢-function happens in the respective predecessor blocks not in the
¢’s block itself.

The SSA-property ensures that only the “most recent” SSA-
value of a variable v is used. Furthermore, it forbids multiple ¢-
functions for one variable in the same basic block.

Lemma 1. Let p be a ¢-function in a block P. Furthermore, let q
in a block QQ and r in a block R be two operands of p, such that p,
q and r are pairwise distinct. Then at least one of QQ and R does
not dominate P.

Proof. Assume that Q) and R dominate P, i.e. every path from the
start block to P contains ) and R. Since immediate dominance
forms a tree, () dominates R or R dominates (). Without loss of
generality, let (Q dominate R. Furthermore, let S be the correspond-
ing predecessor block of P where p is using ¢. Then, there is a path
from the start block crossing ) then R and S. This violates the
SSA-property. O

Lemma 2. If a ¢-function p in a block P for a variable v is
unnecessary, but not obviously unnecessary, then it has an operand
q in a block Q, such that q is an unnecessary ¢-function and Q
does not dominate P.

Proof. The node p must have at least two different operands r and
s which are not p itself, otherwise p is obviously unnecessary. They
can either be:

e The result of a direct assignment to v.

e The result of a necessary ¢-function /. This however means
that " was reachable by at least two different direct assignments
to v. So there is a path from a direct assignment of v to p.

e Another unnecessary ¢-function.

Assume neither 7 in a block R nor s in a block S is an unnec-
essary ¢-function. Then a path from an assignment to v in a block
V., crosses R and a path from an assignment to v in a block Vi
crosses 5. They converge at P or earlier. Convergence at P is not
possible because p is unnecessary. An earlier convergence would
imply a necessary ¢-function at this point which violates the SSA-
property.

So r or s must be an unnecessary ¢-function. Without loss of
generality, let this be 7.

If R does not dominate P then r is the sought-after g. So let R
dominate P. Due to Lemma 1 S does not dominate P. Employing
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the SSA-property, r # pyields R # P. Thus, R strictly dominates
P. This implies that R dominates all predecessors of P which
contain the uses of p, especially the predecessor S’ that contains
the use of s. Due to the SSA-property, there is a path from S to S’
that does not contain R. Employing R dominates S’ this yields R
dominates S.

Now assume that s is necessary. Let X contain the most recent
definition of v on a path from the start block to R. By Definition 4
there are two definitions of v which render s necessary. Since R
dominates .S, the SSA-property yields that one of these definitions
is contained in a block Y on a path R —* S. Thus, there are paths
X —T Pand Y —T P rendering p necessary. Since this is a
contradiction, s is unnecessary and the sought-after q. O

Theorem 1. A program in SSA-form with a reducible CFG G
without any obviously unnecessary ¢-functions is in minimal SSA-
Sform.

Proof. Assume G is not in minimal SSA-form and contains no
obviously unnecessary ¢-functions. We choose an unnecessary ¢-
function p. Due to Lemma 2, p has an operand ¢, which is unnec-
essary and does not dominate p. By induction g has an unnecessary
¢-function as operand as well.

This would lead to an endless number of ¢-functions. Since the
program only has a finite number of operations this is only possible
if there is a cycle when following the ¢ chain.

A cycle in the ¢-functions is only possible with a cycle in the
CFG. As the CFG is reducible this cycle contains one entry block
which dominates all other blocks in the cycle. Since one of the
¢-functions must be in the entry block, we get a contradiction
to our choice of ¢q. So our assumption must be wrong and G is
either in minimal SSA-form or there exist obviously unnecessary
¢-functions. O

Since we know, that our construction algorithm will have opti-
mized all obviously unnecessary nodes, a FIRM graph must be in
minimal SSA-form for reducible CFGs.

3.3.3 Less Than Minimal

As the FIRM construction algorithm implicitly performs some opti-
mizations, the program graph may contain even fewer ¢-functions
than the minimal and pruned SSA definitions require. Consider the
following code example:

X < y;
if (L) {ye—x}

=Y

While the Cytron algorithm will place a ¢-function for y within
the block after the if-statement, our algorithm performs copy prop-
agation on-the-fly and will remove the ¢.

3.3.4 Time Complexity

Let B be the number of basic blocks, E the number of CFG edges,
and V' the number of variables in the input program. Transforming
the program into SSA-form inserts at most O(BV') ¢-functions.
The number of ¢-operands can be limited by O(EV). Since our
algorithm caches the varnum of each variable at each block, we
obtain a time complexity of O(FEV') without the optimization de-
scribed in Section 3.2. For the optimization of a obviously unnec-
essary ¢-function p we need to check at most V' ¢-functions which
uses p. Checking these ¢-functions requires at most O(E) time.
Since there are at most O(BV') ¢-functions, this leads to an over-
all time complexity of O(BV E).

3.3.5 Evaluation

As expected the construction algorithm is fast in practice. On a
Core2-Duo with 2.6 GHz we spend 1308 ms for SSA-construction
of all C-Programs of SPEC CINT 2000. This corresponds to more
than 1200 graph-nodes per millisecond.
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4. Related Work
4.1 Static Single Assignment

The commonly used algorithm for constructing SSA-form has been
described by Cytron et al. [10]. It is based on the observation that
¢-functions for a variable v are only necessary at the iterated dom-
inance frontiers of blocks containing definitions of v. He presents
an efficient algorithm for computing the iterated dominance fron-
tiers. After marking blocks in the iterated dominance frontiers, a
rename phase produces unique variable names. Compared to the
algorithm presented here minimal SSA-form is produced for irreg-
ular control-flow too. This however comes at a higher complexity:
A complete CFG and dominance tree is a requirement. The trans-
formation is performed in two phases without any further implicit
optimizations.

4.2 Usage of FIRM

While FIRM is an intermediate representation, its implementation
also provides a backend, which does not destruct the IR and even
SSA-form is retained in all steps. All work is performed on the IR
by transforming the graph. So the usual work can be described like
this:

instruction selection Match certain patterns within the program
graph and replace these parts, such that the nodes represent
instructions of the target machine. As every essential property is
modelled by the graph structure in FIRM, instruction selection
can be performed with graph transformation techniques [3].

scheduling Insert additional dependency edges, such that there is
a total order for the instructions within each basic block.

register allocation Annotate each instruction with the register for
its result. FIRM has been used by Hack [12] in his work on
SSA-based register allocation, where he showed that SSA-form
implicitly provides points in the program graph to insert a live-
range split. This allows to guarantee a register allocation, be-
cause register pressure lowering can be separated in a phase
before the allocation and does not need to be repeated, as it is
necessary when using common graph coloring algorithms. Ex-
ploiting this property, there has been additional work on register
allocation by Braun et al. [1, 2], which provides competitive re-
sults with significantly reduced compile times by avoiding the
construction of an interference graph.

4.3 Other Intermediate Representations

We already explained why SSA is a useful abstraction and that
it enables FIRM to make certain optimizations inherent. However,
there is still room for additional abstraction.

There has been work on using the program dependence graph
for optimizations [11] which manages to abstract away from a con-
trol flow graph in favor of control dependencies. This was further
extended to the gated SSA-form [15]. More modern variants like
the VSDG graphs model the program state more explicitly [14].
These representations lead to more powerful optimizations and
simpler optimizations but generating good code from these appears
to be very challenging. We have not seen any implementations han-
dling bigger programs, e.g. the SPEC benchmarks.

5. Conclusion

We presented the intermediate representation FIRM, which pro-
vides a lot of desirable features, like being in SSA-form and be-
ing “mostly referentially transparent”. This e.g. allows to shun the
concept of variable names, such that optimizations like copy prop-
agation are inherent. Additionally, SSA makes analyses efficient
and referential transparency (in many cases) makes transformation
simple, so FIRM is a high-quality IR according to our measures.
We also showed how to incrementally construct FIRM graphs,
such that they are in pruned and minimal SSA-form. Transform-
ing an AST or bytecode representation to FIRM is efficient and
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optimizations like copy propagation and constant folding can be
performed along the way.
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Name Type Description

Add B x Num x Num — Num Addition

Alloc BxMxNum— Mx P Allocate memory on the stack
And B x Num X Num — Num Bitwise AND

ASM B x variable — variable Inline assembler

Bad — Any Value of unreachable calculation
Block XoX--+xX,—>— B Basic block

Call B x Numg X --- X Nump X M — Numg X --- X Numy x M  function call

Cmp B x Num X Num — by X - -+ X bis Binary compare

Cond Bxb—XxX Conditional branch

Const — Num Constant value

Conv B x Num — Num Type conversion

Div B x Num x Num — Num Division

End Bx X — End of function

Eor B x Num x Num — Num Bitwise XOR

Free B — M x P x Num Release memory on the stack
Jmp B—X Unconditional jump

Load BxPxM— NumxM Load from memory

Minus B x Num — Num Negate number

Mod B x Num x Num — Num Modulo

Mul B x Num x Num — Num Multiplication

Mux B xbx Num x Num — Num Select value depending on boolean
NoMem — M Empty subset of memory
Not B x Num — Num Bitwise NOT

Or B x Num x Num — Num Bitwise OR

Phi B X Numg X -+ X Num, — Num ¢-function

Proj B xT — Num Projection node

Return B x M x Numg X -+ X Numy, — X Return

Rotl B x Num X Num — Num Rotate left

Sel BxMxP—MxP Select field from structure
Shl B x Num X Num — Num Shift left

Shr B x Num x Num — Num Shift right zero extended
Shrs B x Num X Num — Num Shift right sign extended
Start B—-XXxXMxPxPxT Start of function

Store BxMxPxNum— M Write to memory

Sub B x Num x Num — Num Subtraction

SymConst B x P Symbolical constant

Sync BxMyx--+x M, —M Memory barrier

Unknown — Any Undefined value

The types Tepc are interpreted as follows:

B basic block
X control flow
M memory

P pointer

I integer (32-bit)

S integer (16-bit)

B integer (8-bit)

F floating point (32-bit)

D floating point (64-bit)
E floating point (80-bit)
b boolean

T tuple

Num {P,I,S,B,F,D,E}
Any Teac

[20] S.R. Vegdahl. Phase coupling and constant generation in an optimiz-
ing microcode compiler. SIGMICRO Newsl., 13:125-133, October

Table 1. FIRM Node Types and Signatures
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