
AutoTunium: An Evolutionary Tuner for
General-Purpose Multicore Applications

Andreas Zwinkau
zwinkau@kit.edu

Karlsruhe Institute of Technology (KIT), Germany

Victor Pankratius
pankratius@csail.mit.edu

Massachusetts Institute of Technology (MIT), USA

Abstract—Today’s increasing diversity in multicore hardware
challenges programmers when it comes to software performance
optimization and portability. As multicore processors are in
almost every PC and server, programmers now have to parallelize
a larger spectrum of applications, many of which are non-
numerical. To obtain good performance, programmers typi-
cally try out different software tuning parameter configurations
on each platform. However, this manual approach to finding
good configurations in the search space is impractical due to
combinatorial explosion, but yet it is common practice due to
lack of alternatives for general programs. This paper presents
a smarter way to tackle this problem algorithmically for a
variety of multicore applications, including non-numerical ones.
Our work introduces AutoTunium, a novel feedback-directed
optimizer that automates the application tuning process with
evolutionary search strategies. The software infrastructure is easy
to use and integrated in the popular Eclipse environment. It
collects run-time information to predict parameter configurations
that are likely to lead to good performance in future runs, and
configures programs for production runs in the best possible
way. We quantify the effectiveness of various tuning strategies
on a diverse set of real applications and multicore platforms.
The evaluation shows that AutoTunium’s evolutionary strategies
work well despite the broad scope of applications and perform
better in this context than other simplex-based search algorithms.
Our insights are derived from model-based analyses as well as
from performance analyses with real programs in the PARSEC
benchmark suite.

Keywords: Multicore; performance tuning; portability

I. INTRODUCTION

Multicore processors with several cores on a chip are
standard, and programmers are now challenged to parallelize
all kinds of performance-critical applications. A problem that
makes multicore programming hard is that multicore platforms
are different, e.g., with respect to the number of supported
hardware threads, memory size, memory bandwidth, cache
size, cache architecture, libraries, and operating systems. Con-
sequently, software optimized for one platform might not
perform well on other platforms.

Automatic performance tuning is promising in this context,
but existing techniques focus on particular domains in numer-
ics, such as FFT, signal processing, and matrix multiply [9],
[10], [13], [23]. Moreover, low-level compiler optimizations
often miss important leverage for performance that could have
been additionally achieved by tuning in higher abstraction
layers [1], [17], [22]. Because of this focus, numeric kernel
tuners are not designed to work for a wider spectrum of

programs, especially for ones that do not have any numerical
kernels. Unfortunately, many of today’s multicore applications
on desktops and servers fall into this category. Due to lack
of alternatives, software engineers tackle this problem with
a largely manual approach. First, they introduce changeable
tuning parameters (i.e., “tuning knobs”) in their software, such
as number of threads in application thread pools, buffer sizes,
maximum number of workers, size of data partitions, choices
for algorithms, etc. Then, they try out different parameter
values to find the ones that yield the best performance on each
platform. It is obvious that for k parameters the entire search
space is cross product of all domains, dom(p1)× dom(p2)×
. . .× dom(pk). Exhaustive search is unrealistic because every
tuple evaluation requires at least one program run, which
could last hours. Also, intuition can be a false friend; for
example, applications could miss speedup opportunities where
more threads hide latency, whereas applications that increase
synchronization overhead with more threads would slow down.

This paper shows a smarter and more efficient way to tackle
this problem. It makes the following novel contributions. It
introduces AutoTunium, a new extensible tuning infrastructure
that works in the Eclipse development environment. AutoTu-
nium is designed to work with different sorts of multicore
applications and is demonstrated, among others, on video en-
coding, image processing, ray tracing, clustering, data mining,
simulations, content search, and compression. AutoTunium
uses a tuning technique that works well in a breadth of
domains, rather than in one single domain as previous work in
[9], [10], [13], [23]. AutoTunium combines systematic search
and randomized search to escape local minima and provides
the means for optimizations beyond fine-granular instruction
optimizations [1], [17], [22]. We provide a thorough evalua-
tion comparing variants of evolutionary tuning, simplex-based
tuning, swarm tuning, and random tuning, using model-based
analyses as well as benchmarks with real programs from the
PARSEC [2] benchmark suite. We show that AutoTunium’s
evolutionary search outperforms simplex approaches that are
most commonly used on other platforms [19].

The paper is organized as follows. Section II details the
optimization problem. Section III sketches the AutoTunium
performance tuning framework. Section IV presents the plug-
gable evolutionary tuning strategies. Sections V and VI de-
scribe particle swarm tuning, simplex- and polytope-based
methods as alternative and commonly used tuning. Section

VII evaluates and compares all tuning techniques. Section VIII
contrasts related work. Section IX provides our conclusion.

II. THE PROBLEM

Our particular optimization problem is related to offline
tuning and can be formulated as follows. Given a multicore
program P with k performance-relevant parameters (assumed
to be accessible via command line), the goal is to minimize P ’s
execution time iteratively. We start with an initial parameter
configuration, then execute P , measure run-time, and calculate
a new parameter configuration. The process repeats until some
termination condition holds, e.g., reaching a given number
of executions or a performance improvement below a certain
threshold. Tuning is carried out prior to production runs of the
program. After the tuning process ends, the program uses the
best configuration found so far.

We model a program configuration with k parameters
as a multi-dimensional vector x ∈ Nk. Let the run-time
measurement of a program with parameters k be a function
t : Nk → R. Our performance optimization problem can then
be formulated as a multi-dimensional minimization problem:
argmin(t(x)) for x ∈ Nk. Since program parameter configu-
rations are elements of the vector space Nk, the minimization
of t is equivalent to the search of the smallest element in Nk,
where the comparison of two configurations x and y ∈ Nk is
determined by their corresponding run-time: x < y ⇔ t(x) <
t(y). The function t is discontinuous and non-differentiable, so
our approach is based on empirical search methods [12] that
don’t require derivatives and use just function evaluations.

As evolutionary search methods use randomization, result
comparison is tricky. We evaluate tuning strategies with two
common empirical metrics. The first metric is the tuning error,
i.e., the distance between the optimum found by an algorithm
and the real optimum (known in our benchmarks). The second
metric is the number of program executions of P (which in
our designs is also the number of tuning algorithm iterations),
motivated by the fact that run-times can vary for different
programs in various domains, from seconds to days. If the
number of iterations was fixed, programs with short run-times
might have a chance to perform more evaluations with certain
algorithms and thus end up better because the optimization has
advanced more, whereas programs with long run-times would
be at a disadvantage. The number of evaluations is therefore
more useful for a cross-comparison of tuning strategies rather
than just looking at the sum of program execution times
plus some overhead between runs. In our scenarios, parameter
reconfiguration occurs between program runs, so tuning time
and tuning overhead does not affect program run-time, and
tuning overhead is typically dwarfed by P ’s execution time.

III. AUTOTUNIUM: A SOFTWARE INFRASTRUCTURE FOR
MULTICORE APPLICATION PERFORMANCE TUNING

AutoTunium is a multicore performance tuning infrastruc-
ture that can be connected to any type of executable program;
it also does not require programmers to write their applications
in a particular language. These features greatly relax many

constraints imposed by previous work (see Section VIII).
AutoTunium is aimed at average developers who need to tune
multithreaded applications with many performance-relevant
parameters (typically accessible on the command line). Fig-
ure 1 shows parts of the user interface, which is integrated
into the Eclipse development environment.

Figure 1. Screenshot of AutoTunium in Eclipse.

AutoTunium is written in Java and is extensible with tuning
plugins that are implemented in Java. Plug-ins do not require
recompilation and can be treated as scripts. AutoTunium
comes along with several tuning plugins, but new plugins
could be downloaded for example from Web repositories when
programmers want to update or customize search strategies
for different sets of programs. All algorithms in this paper
are implemented as plugins, so they all use the same common
tuning infrastructure. Also, all techniques are carefully ensured
to work on a discrete space.

AutoTunium optimizes as described in the previous Section.
Program run-time is optimized using multi-dimensional search
algorithms and user-defined constraints for parameter values.
The objective function used here is minimizing program run-
time, though it is possible to specify other minimization and
maximization problems.

IV. AUTOTUNIUM’S EVOLUTIONARY TUNING

AutoTunium’s evolutionary tuning strategies are inspired
by [14], [18]. In the context of general-purpose multicore
application tuning these techniques have not been explored
thoroughly so far; this paper thus conducts a detailed analysis
and compares various adaptations in the context of multicore
performance tuning.

A. Basic Evolution

Evolutionary algorithms operate on a population of individ-
uals. New individuals (i.e., in our case, performance config-
urations) evolve using mutation and selection operators [14].
Each individual has a fitness value, which in our case is the
associated execution time. Algorithm 1 sketches performance
tuning with a population of size k.

In each generation, AutoTunium creates one new indi-
vidual by mutation. The selectionk operator selects the k
best individuals for the next generation by mixing the two
best individuals with a random individual. This step keeps
individuals with good performance characteristics.

Algorithm 1 Basic Evolution Tuning
p ∈ (Nn)k , a set of configuration vectors
for g generations do

p← selectionk(p ∪ {MUTATION(p)})
return selection1(p)

procedure MUTATION(p)
b = best vector of p
s = second best vector of p
r = random vector from p
return αb+ βs+ γr

We generate new mutants by mixing the two best individuals
and one random individual. In addition, we employ random-
ization to potentially escape local minima. The influence of
each individual is determined by a weight α, β, γ ∈ R, where
α+β+γ = 1 and α = 0.3, β = 0.5, γ = 0.2. These parameters
focus the search in the area around the best individual but also
provide enough weight to escape potential local minima, which
is what we need in multicore application performance tuning.

Finding a suitable termination condition requires a com-
promise. If individuals flock at two different local optima,
the algorithm might not terminate if the condition requires a
vicinity of ε. Stopping after certain decreases in improvement
might miss important parts of the search space. Our explorative
studies have shown that the following approach is effective:
We limit the search to a number of generations logarithmic in
relation to the search space and stop after g = d · log(1000n)
generations, where d is the dimension of the search space and
n the number of configurations.

B. Differential Evolution

As shown in Algorithm 2, Differential Evolution uses a
mutation method that differs from Basic Evolution.

Algorithm 2 Differential Evolution Tuning
procedure MUTATION(p)

select p1, p2, p3, p4 ∈ p randomly
return MIXα(p1 + F · (p2 − p3), p4)

procedure MIXα(x, y)
for all i ∈ {1, . . . , |x|} do

zi =

{
xi with probability α
yi else

return z

The mutation operator [18] picks four random vectors
p1, . . . , p4. It scales the difference p2 − p3 by a differential
weight factor F ∈]0, 2] and updates v = p1 + F · (p2 − p3).
To increase diversity, p4 is mixed with v to produce a new
vector n = mixα(v, p4). Elements from p4 are selected with
probability α and from v with probability 1−α, where F = 0.3
and α = 0.2. The resulting vector is added to the population
p, and the individual with the worst fitness value is removed.

C. Balanced Evolution

AutoTunium’s balanced evolution is a new technique that
initializes starting configurations with the boundary points
in the search space, i.e., the points where the values of
each dimension are minimal or maximal. For example, a
2-dimensional search space [1, n] × [1,m] has the boundary
{(1, 1), (n, 1), (1,m), (n,m)}. Other random configurations
are added until the initial population has the same size as
in the other presented algorithms, to keep results comparable.

Algorithm 3 Balanced Evolution Tuning
p← starting population
for g generations do

p← p ∪ {MUTATION(p)}
return selection1(p)

procedure MUTATION(p)
select x from p with maximum ix
return {x}

The point to evaluate next in the search space is selected
based on the following rationale. On the one hand, uncertainty
should be reduced by avoiding that parts of the search space
are not covered at all. On the other hand, we need focus around
configurations that are promising to be a global optimum.
We assume that points with good performance are in the
neighborhood of other points with good performance so far.

We associate ip = uncertainty − potential to a point ~p
in the search space. In particular, uncertainty = |~np − ~p|
and potential = (t(~np) + t(~n′p))/2, where t is run-time, ~np
is the nearest evaluated point to ~p, and ~n′p the second nearest.
uncertainty steers the coverage of the search space, whereas
potential steers search convergence. When generating a new
individual, AutoTunium selects the point p with maximum
ip. The algorithm terminates when the maximum number of
generations is reached. The selection of the best individual
occurrs after termination, as an earlier removal of individuals
from the population would discard data learned so far. In
extremely rare cases where ~np and ~n′p are next to each other
and the population does not change, AutoTunium starts over.

D. Unbalanced Evolution

In a variant of balanced evolution AutoTunium ignores the
uncertainty of Balanced Evolution. This strategy leads to a
faster convergence. It follows the direction of configurations
that are most likely optimal and avoids unknown territories. It
risks, however, getting stuck in local optima.

V. PARTICLE SWARM TUNING

Particle swarm tuning [11] works in a similar way as
evolutionary tuning. In principle, AutoTunium uses particles
floating through the search space with a certain inertia and
which are expected to flock eventually around the global
minimum.

Algorithm 4 Particle Swarm Tuning
initialize particle swarm S
b ∈ S with t(b) minimal
for k steps do

for p ∈ S do
//p∗ is the best in p’s history
//dp is p’s current movement
//vector
dp ← dp + α(b− p) + β(p∗ − p)
p← p+ dp
if t(p) > t(b) then

b← p

return b

Autotunium’s initial swarm consists of a set S of random
points from the search space. Each particle ~p has a movement
vector ~dp. Furthermore, let ~p∗ be the best configuration of p
so far and ~b the best of all ~p∗. In iteration i, each particle’s
movement vector ~dp is adjusted by ~dp,i = ~dp,i−1+α(~b−~p)+
β(~p∗ − ~p), with α = 1.1 and β = 0.3. Each particle’s new
position is then determined by ~pi = ~pi−1 + ~dp,i. If in rare
cases particles swap over the search space, they are pushed
back to the closest feasible location.

The particle count is logarithmic in relation to the search
space size, and step count is linear in dimension size. Auto-
Tunium terminates after a predefined step count. This design
makes results comparable to the ones discussed in the other
sections.

VI. SIMPLEX- AND POLYTOPE-BASED TUNING

For comparison purposes, AutoTunium also has a plugin
for the well-known Nelder-Mead technique [5] that works
with a simplex moving through the search space to find
minima. A simplex s ∈ (Rd)d+1 is the simplest polygon for
an arbitrary dimension d (e.g., a triangle in two-dimensional
space). Algorithm 5 uses three parameters α, β and γ, with
α = 1.1, β = 0.65, γ = 2.0. In every step, only the worst
node is moved. If a point is moved outside the search space,
it is pushed back into valid space with a small random
displacement.

The termination condition is based on the distance sum u of
every simplex node to the best simplex node. The rationale is
that simplex points will get closer together when a minimum
is approached. As we operate on discrete values the simplex
cannot contract below a certain limit, so it stops when u ≤
|s| · d.

Polytope-Based Tuning. Autotunium extends the simplex
technique to work for polytopes, as a simplex is a special case
of a polytope that has s ∈ (Rd)x and x > d+ 1 compared to
a simplex. Here, AutoTunium assumes that more points will
improve tuning quality.

Two factors have to be balanced; on the one hand, x should
be large, which implies that there is more information when
making a decision. On the other hand, x should not be too large

Algorithm 5 Simplex-based Tuning
s ∈ (Nn)n+1

n← reflexionα(s)
while u > |s| · d do

if t(n) > t(worst(s)) then
n← n+ β · (best(s)− n)
if t(n) > t(worst(s)) then

compressβ(s)
n← reflexionα(s)

else
if t(n) < t(best(s)) then

n← n+ γ · (n− worst(s))
else

s← (s ∪ {n}) \ {worst(s)}
n← reflexionα(s)

return m

and cause a large number of initial evaluations, which would
render the approach too expensive due to repeated program
executions. Our evaluations revealed that there is no significant
difference for x ∈ {2d, 4d, 8d}, so AutoTunium initializes
polytopes with x = 4d, while applying the same optimization
rules as in simplex-based optimization.

VII. HOW DOES AUTOTUNIUM PERFORM?

This Section evaluates AutoTunium’s tuning strategies from
several perspectives: (1) in a model-based approach with
known and complex multidimensional search spaces, and (2)
on a suite of real parallel programs that are tuned on 4-core
and 8-core platforms.

Starting with search space models has the advantage to
eliminate system-related noise and analyze tuning behavior in
a controlled environment. This allows us to characterize and
explain key factors affecting tuning effectiveness. In the next
step, we benchmark our approaches with a variety of real-
world multicore applications. Our insights are highly valuable
for parallel programmers who are under pressure to produce
good results quickly.

A practical problem is that the number of iterations (i.e.,
how often they execute a program that is tuned) cannot always
be controlled for every tuning strategy. So it is not possible to
keep this parameter constant, try out all algorithms, and select
a winner based on the lowest-found program execution time.
It happens that one algorithm needs many evaluations and
achieves a good result, whereas another algorithm needs fewer
iterations for a worse result. One cannot say that “20 tuning
iterations leading 10s program run-time” is better than “10
tuning iterations leading to 30s program run-time”; it depends
on the preference of the developer whether he or she favors
fewer iterations or lower run-times. This is why we conduct
several analyses from different perspectives to quantify these
tradeoffs. We employ percentile boostrapping [8] to estimate
confidence intervals and make sure that our results are within
acceptable ranges.

A. Model-Based Analyses

1) Program Performance Models: We start with models
of multicore program performance to analyze the tuning
strategies in a controlled environment. De Jong [7] collected
a set of five functions that are commonly used to stress-test
optimization approaches: Sphere, Rosenbrock’s Saddle, Steps,
Biquadratic Function with noise, and Shekel’s Fox Holes func-
tion. We included three additional functions to increase variety.
Examples for some function shapes in three dimensions are
shown in Figure 2; each function models the run-time of
a program as the dependent variable and two performance-
impacting parameters as the independent variables. In the mul-
tidimensional case we employ f(x1, · · · , xn) =

∏n
i=1 f(xi),

and a “Holes” function created algorithmically according to
[7]. All functions are discretized and scaled to [1, 1000]. Up
to 10% of noise is added to simulate fluctuations of real
measurements.

Bump Log Spike Steps

Hyperbola Parabola Wavy Holes
(see Text)

2-x for x<=2
x otherwise

ln(x+e) log(x)-max(0,1-x) 10-|x|

1/(1+x) x² sin(x)+x

Figure 2. A 3-D Example of Multicore Performance Search Spaces.

2) Overall Comparison: This initial comparison uses ran-
dom tuning as a baseline. In particular, we execute each
tuning algorithm and count the number of iterations n until
it stops and returns its best value A. Then, we randomly
sample same number of values n from the search space and
determine the best value B. The relative difference between
A and B provides a first insight how well the tested algorithm
optimizes. To exclude bias, we run each experiment 500
times, which leads to stable convergence results within 95%
confidence intervals.

The following table presents the average relative improve-
ment of each tuning algorithm’s result in comparison to
random tuning, on the same number of respective evaluations.

Tuning Strategy Avg. Improvement over Random Tuning
Balanced Evolution 18.5%

Unbalanced Evolution 18.1%
Basic Evolution 12.3%
Particle Swarm 8.5%

Differential Evolution 1.8%
Simplex -3.5%
Polytope -11.4%

The table surprisingly reveals that Simplex and Polytope
have worse tuning results than random. That is, Simplex would
provide on average a program run-time that is 3.5% worse and
Polytope a run-time that is 11.4% worse than random, i.e., if

the same number of random configurations were chosen in
each experiment in the same context. Basic Evolution as well
as Balanced and Unbalanced Evolution find better-performing
configurations than random. Balanced Evolution ranks best.
Even though these averages provide a high-level overview,
they miss details when it comes to understanding the tradeoff
between number of evaluations and optimization results. We
therefore conduct additional analyses, as shown next.

3) Trade-off Analysis: Figure 3 presents another perspec-
tive. It shows for each tuning strategy the trade-off between
the number of evaluated configurations (y-axis) vs. the tuning
error relative to the best algorithm. We compute the error as
the average difference between the best returned value by an
algorithm and the global optimum (which is known because
the functions are known). The relative tuning error positions
each algorithm in comparison to the best algorithm, i.e., the
one that got closest to the global optimum. Vertical bars
illustrate the standard deviation of evaluated configurations.
The width of horizontal bars shows the 95% confidence
interval for the mean error. Algorithms in the lower half of the
graph need fewer program evaluations, whereas algorithms in
the left half have better optimization results.

Evolutionary algorithms have significantly lower errors than
Simplex. Basic Evolution optimizes best and Simplex worst.
One could hypothesize that the bad result for Simplex is
due to fewer iterations, however, Polytope shows that addi-
tional iterations do not reduce errors significantly. Among
the evolutionary approaches, Unbalanced Evolution requires
the fewest iterations and still beats Polytope and Simplex in
finding configurations closer to the optimum. Particle Swarm
optimizes second-best, but as shown later, it does not work
well on real programs, where evolutionary algorithms do.

0 20 40 60 80 100 120 140
relative error mean with 95% confidence interval

0

5

10

15

20

25

30

35

ev
alu

at
ion

s m
ea

n
wi

th
 st

an
da

rd
 d

ev
iat

ion

BalancedEvolution

BasicEvolution
DifferentialEvolution

ParticleSwarm

Polytope

SimplexUnbalancedEvolution

Figure 3. Trade-off comparison: Number of evaluations vs. optimization
error.

4) Model Impact on Tuning: Figure 4 shows what impact
the different function shapes have on each tuning strategy.
The Figure plots the average tuning error (computed from 500

trials averaging the absolute differences between the best value
found and the actual optimum) for each model, which should
ideally be zero.

Figure 4. Impact of model on tuning effectiveness.

The bars show that all algorithms find values close to the
optimum on the Hyperbolic function, where large regions of
the search space have values close to the global optimum. All
algorithms also work well on the Parabolic function. Simplex-
based tuning does not work well on the functions Wavy, Steps
and Spike. This observation suggests that it will not work
well on programs with noisy or erratic performance behavior.
However, the Polytope extension is capable of compensating
some of Simplex’ weaknesses. All algorithms fail on the
Holes function (bars are cut-off in the graph), which is a
tough case, however, Basic Evolution leads the field there
as well, while Polytope and Simplex are last (2.26x worse
than Basic Evolution). Thus performance tuning will likely
be inefficient with any algorithm if program performance can
only be characterized by the Holes function.

B. Tuning Analyses with Real Programs

The practical experiments complement the model-based
evaluation presented in the previous Section in real-world
scenarios.

1) Benchmarks: We evaluate all tuning algorithms on par-
allel programs from the widely used PARSEC [2] benchmark
suite, which is composed of thirteen multithreaded shared-
memory programs aimed at representing a broad spectrum of
workloads on today’s multicore systems. PARSEC includes
programs such as video encoding, image processing, ray
tracing, clustering, data mining, simulations, content search,
compression, and others.

Our experiments are carried out on the following multicore
platforms: (1) Intel Core2 Quad Q6600 CPU with 4 cores,
2.4 GHz, 3GB RAM, Ubuntu Linux 10.04 with kernel 2.6.32.
(2) Intel 8-core machine with 2x Quadcore Xeon E5320
processor, 1.86 GHz, 8 GB RAM, Ubuntu Linux 10.4 with
kernel 2.6.32. Our setup allowed us to gather over a longer
period of time the entire search space and determine the global

optimum run-time for each application configuration. This way
we can compute the error of our algorithms compared to the
true optimum for each application on each platform. Then,
each tuning algorithm walks through the same search space
on of the respective machine and input data set, to enable a
fair comparison on the number of required evaluations and
tuning error. Each algorithm runs to completion 500 times
for each PARSEC program which provides acceptable results
within 95% confidence intervals.

2) Inputs: The evaluation uses two input data sets:
“medium” size (PARSEC “simlarge”) and “large” size (PAR-
SEC “native”). The “medium” set leads to execution times
of about 12–20 seconds for one run for one program; for the
“large” set it is approximately 10–30 minutes. We exhaustively
execute all program configurations for each thread number
(1..60), machine (1,2), and program (13); it takes over a
month alone to compute the data for all 60× 2× 13 = 1560
configurations, which is why this experimental evaluation is
limited to one performance parameter (and complemented with
more parameters in the model-based analysis in the previous
Section). Here, the experiments determine the optimum num-
ber of threads to use on each platform; even though this might
appear easy, this parameter already has non-intuitive outcomes.
For example, the vips workload has its optimum at 22 threads
on our 8-core machine, and not at 8 threads as one might
intuitively expect. Actually, the runtime at 8 threads is 20%
worse than the best achievable runtime at 22 threads.

3) Results: Figure VII-B compares the tuning results of
each tuning strategy for each platform and data set. Due to
space limitations, we just graph key results. In each graph, the
left-most algorithm has the lowest tuning error, and the right-
most the highest. Algorithms closer to the bottom of each
graph require fewer configuration evaluations, i.e., they will
execute a tunable program less often. For each tuning strategy,
a filled circle indicates the average number of iterations and
the resulting error. The width of horizontal bars shows the
95% confidence interval for the mean error. A vertical line
indicates the std. deviation in the number of total evaluations
(remark: using the coefficient of variation in Figures 3 and
VII-B yields smaller bars, but leads to the same conclusions).

4-core platform. On the medium data set, Figure 5(a) shows
that the evolutionary algorithms have lower errors (i.e., find
better performance configurations) than all other algorithms.
Balanced Evolution is the best, followed by Basic Evolution
and Differential Evolution. Particle Swarm ranks last, being
almost 80% worse than Balanced Evolution. It is worth noting
that Simplex beats Particle Swarm with a lower error using
almost the same average number of evaluated configurations,
but the optimization error is higher than that of evolutionary
algorithms. On the large data set, Figure 5(b) shows that
Basic Evolution has the lowest error, followed by Differential
Evolution. Basic Evolution and Balanced Evolution have a
similar average evaluation counts, however, Basic Evolution
still has a lower error. Last ranked is Particle Swarm, which is

0 20 40 60 80 100
relative error mean with 95% confidence interval

0

5

10

15

20

ev
alu

at
ion

s m
ea

n
wi

th
 st

an
da

rd
 d

ev
iat

ion

BalancedEvolution

BasicEvolution

DifferentialEvolution

ParticleSwarm

Polytope
Simplex

UnbalancedEvolution

(a) Medium data set, 4-core platform

0 10 20 30 40 50 60 70
relative error mean with 95% confidence interval

0

5

10

15

20

ev
alu

at
ion

s m
ea

n
wi

th
 st

an
da

rd
 d

ev
iat

ion BalancedEvolution
BasicEvolution

DifferentialEvolution

ParticleSwarm
Polytope

Simplex

UnbalancedEvolution

(b) Large data set, 4-core platform

0 100 200 300 400 500
relative error mean with 95% confidence interval

0

5

10

15

20

ev
alu

at
ion

s m
ea

n
wi

th
 st

an
da

rd
 d

ev
iat

ion

BalancedEvolution

BasicEvolution

DifferentialEvolution

ParticleSwarm
Polytope Simplex

UnbalancedEvolution

(c) Medium data set, 8-core platform

0 10 20 30 40 50 60 70 80
relative error mean with 95% confidence interval

0

5

10

15

20

ev
alu

at
ion

s m
ea

n
wi

th
 st

an
da

rd
 d

ev
iat

ion BalancedEvolution
BasicEvolution

DifferentialEvolution

ParticleSwarm
Polytope

Simplex

UnbalancedEvolution

(d) Large data set, 8-core platform

Figure 5. Tuning comparison on the PARSEC benchmark on 4-core and 8-core platforms.

almost 60% worse than Basic Evolution. Simplex is second-
last, being more than 50% worse than Basic Evolution.

8-core platform. On the medium data set, Figure 5(c) shows
that Basic Evolution ranks first (with the lowest error) followed
by Differential Evolution. Particle Swarm ranks last, being
over 400% worse than Basic Evolution, and Simplex is second-
last being 320% worse. Polytope ranks third; its strategy can
obviously compensate in this context the shortcomings of the
Simplex approach, so visiting simultaneously more points in
the search space pays off. On the large data set, Figure 5(d)
shows that Basic Evolution ranks first, again followed by
Differential Evolution. Simplex, Polytope, and Particle Swarm
are on the last ranks.

C. Discussion and Insights

AutoTunium’s evolutionary strategies work well for general-
purpose parameter tuning in our diverse set multicore applica-
tions. Evolutionary approaches such as Basic Evolution have
consistently lower tuning errors than the other approaches. The
data shows that application tuning is influenced by the input

data size and the characteristics of each platform, but that the
evolutionary strategies adapt well.

In three out of four times, Basic Evolution ranks first and
Differential Evolution ranks second. Balanced evolution ranks
first once. Unbalanced Evolution often gets stuck in local min-
ima, due to its design, but is still better than others. At the other
end, Particle Swarm ranks last in three out of four times, and
the other algorithms often produce better results for a similar
number of program evaluations. Evolutionary approaches have
lower errors than Simplex which ranks third-last two times and
second-last two times. Evolutionary algorithms typically need
slightly more evaluations, but lead to better results. Polytope
shows that extending Simplex to visit more points does not
help much, as its search rules do not match well to typical
multicore workloads.

The advantage of evolutionary tuning strategies is that they
have an inherent, continuously executed randomization that
complements their systematic search. This randomization al-
lows them to better cope with noise and rocky shapes of search
spaces that trap the other algorithms into local minima. This
effect has been confirmed by our observations in the model-
based evaluations as well as for real multicore applications.

VIII. RELATED WORK

Approaches applying auto-tuning are predominantly used
in numerics and typically generate the platform-specific code
of an entire application (e.g., ATLAS [23] and OSKI [21]
for matrix computations, FFTW [9] for FFT, FIBER [10] for
eigensolvers, and SPIRAL [13] for DSP). In [4], ORIO is
used as a code annotation and transformation tool to generate
different versions of numerical kernel codes. To take advantage
of all tuning features, the aforementioned techniques and
others such as [3], [19] usually require developers to program
the whole application in proprietary language or use some
proprietary resource specification language.

AutoTunium’s approach differs in several important ways. It
does not require using a particular programming language, but
merely needs an exposition of application tuning parameters
to the tuner. AutoTunium also does not concentrate on solving
one particular problem, such as matrix multiply, but extends
to evaluating the performance configuration search space of
a variety of general-purpose multicore applications. Another
difference is that AutoTunium does not generate the entire
code of the tunable application in each iteration, but instead
reconfigures an existing application. It is not excluded, how-
ever, that AutoTunium can be used in conjunction with other
optimizers or compiler-level tuners such as [1], [6], [17], [20],
[22], [24].

With respect to tuning, other works such as [19] require
that programmers describe tuning options in a proprietary
resource specification language, which is not necessary in
AutoTunium. The system in [19] also employs a simplex-
based algorithm for tuning, however, our results show that such
techniques should not be the first choice when configuring a
set multicore programs from a variety of fields. The work of
[15] uses fuzzy rules for an adaptive control approach in non-
multicore systems. Other comparisons in [16] are limited for
single-threaded performance on four search spaces that stem
from two dense linear algebra routines; in that context particle
swarm optimization was good for tuning loop unrolling and
blocking. By contrast, particle swarm optimization does not
work well in our context for tuning multicore application
parameters.

Overall, AutoTunium has a broader scope to support soft-
ware engineers in general-purpose multicore application de-
velopment and tuning parameter configuration.

IX. CONCLUSION

Performance tuning of multicore applications has become
difficult due to the hardware variety. Non-adaptive multi-
core software might thus perform well on one platform, but
poorly on others. The lack of practical solutions for the
tuning of general-purpose multicore applications traps many
software engineers into tedious trial-and-error processes with
large search spaces. This paper presents a smarter way of
configuring a multicore application’s tuning knobs with an
algorithmic approach. The AutoTunium system demonstrates
the applicability of automatic tuning on a wide set of different
programs including video encoding, image processing, ray

tracing, clustering, data mining, simulations, content search,
and compression. AutoTunium’s evolutionary tuning strategies
find the best performance configurations and outperform other
commonly used strategies in literature. The specific combina-
tion of systematic and randomized search is a key factor why
evolutionary strategies are superior in our context. Our system
also overcomes a major constraint of previous solutions that
apply only to specific numerical kernels. Overall, AutoTunium
makes an important leap not only towards better multicore
performance, but also towards better portability and increased
programmer productivity.

ACKNOWLEDGEMENTS

We thank the German Excellence Initiative and KIT for their
support while the second author was at KIT in Karlsruhe.

REFERENCES

[1] Ctuning project. http://ctuning.org, 2011.
[2] The PARSEC benchmark suite. http://parsec.cs.princeton.edu, 2011.
[3] J. Ansel et al. PetaBricks: A language and compiler for algorithmic

choice In Proc. PLDI, 2009.
[4] P. Balaprakash et al. Can Search algorithms save large-scale automatic

performance tuning? Technical report ANL/MCS-P1823-0111, Argonne
National Laboratory, January 2011.

[5] R. R. Barton and J. S. Ivey, Jr. Modifications of the Nelder-Mead
Simplex method for stochastic simulation response optimization. In
Proc. WSC, 1991.

[6] C. Chen et al. Combining models and guided empirical search to
optimize for multiple levels of the memory hierarchy. In Proc. CGO,
2005.

[7] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, Ann Arbor, MI, USA, 1975.

[8] B. Efron. R.J. Tibshirani. An introduction to the bootstrap. New York:
Chapman & Hall, 1993.

[9] M. Frigo and S. Johnson. Fftw: an adaptive software architecture for
the FFT. In Proc. IEEE ICASSP, volume 3, pages 1381–1384, 1998.

[10] T. Katagiri et al. Fiber: A generalized framework for auto-tuning
software. In Proc. ISHPC, 2003.

[11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE
Int. Conf. on Neural Networks, Piscataway, NJ, 1995.

[12] Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics.
Springer Verlag, 2004.

[13] M. Puschel et al. Spiral: code generation for dsp transforms. Proc. of
the IEEE, 93(2), 2005.

[14] I. Rechenberg. Evolutionsstrategie: Optimierung Technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[15] R. Ribler et al. Autopilot: Adaptive control of distributed applications.
In Proc. IEEE HPDC, 1998.

[16] K. Seymour et al. A Comparison of search heuristics for empirical code
optimization. In Proc. CGO, 2008.

[17] M. Stephenson et al. Meta optimization: improving compiler heuristics
with machine learning. In Proc. PLDI, 2003.

[18] R. Storn and K. Price. Differential evolution- a simple and efficient
adaptive scheme for global optimization over continuous spaces. Tech-
nical report, 1995.

[19] C. Tapus et al. Active harmony: Towards automated performance tuning.
In Proc. HPNC, 2003.

[20] A. Tiwari et al. A scalable auto-tuning framework for compiler
optimization. In Proc. IPDPS, pages 1–12, 2009.

[21] R. Vuduc et al. Oski: A library of automatically tuned sparse matrix
kernels. Journal of Physics: Conference Series, 16(1):521+, 2005.

[22] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores: a
machine learning based approach. In Proc. PPoPP, 2009.

[23] C. R. Whaley et al. Automated empirical optimizations of software and
the atlas project. Parallel Computing, 27(1-2):3–35, January 2001.

[24] K. Yotov et al. Is search really necessary to generate high-performance
blas? Proc. of the IEEE, 93(2):358–386, February 2005.

