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ABSTRACT
The efficient use of future MPSoCs with 1000 or more pro-
cessor cores requires new means of resource-aware program-
ming to deal with increasing imperfections such as process
variation, fault rates, aging effects, and power as well as ther-
mal problems. In this paper, we apply a new approach called
invasive computing that enables an application programmer
to spread computations to processors deliberately and on
purpose at certain points of the program. Such decisions can
be made depending on the degree of application parallelism
and the state of the underlying resources such as utiliza-
tion, load, and temperature. The introduced programming
constructs for resource-aware programming are embedded
into the parallel computing language X10 as developed by
IBM using a library-based approach. Moreover, we show
how individual heterogeneous MPSoC architectures may be
modeled for subsequent functional simulation by defining
compute resources such as processors themselves by light-
weight threads that are executed in parallel together with
the application threads by the X10 run-time system. Thus,
the state changes of each hardware resource may be simu-
lated including temperature, aging, and other useful moni-
tor functionality to provide a first high-level programming
test-bed for invasive computing.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; D.3 [Software]: Programming Languages;
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures

General Terms
X10, MPSoC, Simulation, Resource-aware programming

1. INTRODUCTION ANDMOTIVATION
With the ever increasing number of cores that may be inte-
grated on a single chip, difficulties arise when programming
SoC devices in a resource-efficient manner. We see invasive
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computing [14] as a solution to this problem: With this term,
we envision that applications running on a Multi-Processor
System-on-a-Chip architectures (MPSoC) might map and
distribute their workload themselves based on their tempo-
ral computing demands, temporal availability of resources,
and other state information of the resources (e. g., temper-
ature, faultiness, resource usage, permissions). However, in
order to make this computing paradigm become a reality and
to evaluate its benefits properly, the way of application de-
velopment including algorithm design, language implemen-
tation and compilation tools needs to change to a large ex-
tent. The idea of allowing applications to spread their com-
putations on resources and later free them again decentrally
by themselves at run-time sounds promising. The expected
benefits include an increase of speedup (with respect to stat-
ically mapped applications), fault-tolerance, and a consider-
able increase of resource utilization, hence computational
efficiency. These efficiency numbers, however, need to be
analyzed carefully and traded against the overhead caused
with respect to statically mapped applications.

1.1 Invasive Computing
First and most fundamentally, in [13] and [14], Teich and
others introduced a novel paradigm for resource-aware com-
puting called invasive computing1 that integrates research
on algorithms as well as architectures. The main idea be-
hind invasion is to add to each application the ability to
explore and claim resources in a certain neighborhood and
to copy its configuration code, program, and possibly data
to such places in a phase of invasion, and then to execute
the given problem in parallel based on the available (inva-
sible) region of processing resources. Through invasion, an
application will thus be able to spread its computations for
parallel execution based on the availability and the actual
state of processing resources. For execution phases of re-
duced degree of available application parallelism, the appli-
cation may itself perform a retreat to free occupied resources
so to optimally exploit all resources and make them avail-
able for other applications.

The chart depicted in Figure 1 shows the typical state transi-
tions that occur during the execution of an invasive program.
In the beginning, an initial claim has to be constructed. By
claim we denote a set of cores that the application can use for
its parallel execution. Claim construction is done by issuing
a call to invade. After that, infect is used to start the actual

1Invasive computing is not directly related to invasive soft-
ware composition [1] that deals with software engineering.
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Figure 1: State chart of an invasive program.

application code on the previously allocated claim. The ac-
tual application code that is spread onto infected resources
for subsequent parallel execution is called i-let (standing for
invaslet2). Once the execution on all cores finishes, the num-
ber of cores inside the claim can be altered by calling invade
or retreat to either expand or shrink the application’s claim.
In case of retreat, the processing elements are cleaned up
from the i-let entities that have been setup by infect. Alter-
natively, if the degree of parallelism does not change, it is
also feasible to dispatch a different program onto the same
set of cores by issuing another call to infect. If a call to
retreat leaves the claim empty, there are no computing re-
sources left for further execution of the program, hence it
terminates its execution and exits. Notably, a claim may
not only contain processing resources, but also memory as
well as communication resources.

We do believe that invasive computing might solve many
future problems of massively parallel application process-
ing on future MPSoC platforms by providing and porting
principles of self-organization into reconfigurable architec-
tures, integrating 1000 and more processor cores on a sin-
gle chip. The major advantages of invasive computing are
that it will provide resource-awareness, a gain in compu-
tational efficiency and performance, application-level error
resiliency, self-adaptive power control and management, and
self-optimization of resource utilization. Another objective
is to increase the lifetime or to encompass aging effects of
future sub-micron technology by avoiding stressing the hard-
ware too much. The major advantages invasive computing
will be offering can be summarized as follows:

• Gain in computational efficiency and performance

• Application-level fault-detection and fault-tolerance

• Self-adaptive power control and management

• Self-optimization of resource utilization

1.2 Contributions
Based on the introduced paradigm of invasive computing, we
will introduce programming constructs for resource-aware
programming and show how these abstract constructs may
be embedded into the existing concrete parallel computing
language X10 [4] as developed by IBM using a library-based
approach. Subsequently, we show how individual heteroge-
neous MPSoC architectures may be modeled for subsequent
functional simulation by modeling compute resources such as
processors themselves by light-weight parallel threads that
are executed together with the application threads by the
X10 run-time system. Thus, the state changes of each hard-
ware resource may be simulated including temperature, ag-
ing, and other useful monitor functionality so to provide a
first high-level programming test-bed for invasive comput-
ing. As a case study, we present fragments of embedded im-
age computing algorithms such as parts of an invasive JPEG
decoder and a resource-aware parallel histogram computa-
tion algorithm. We conclude with a summary and outline
of future work.
2This conception goes back to the notion of a servlet, which
is a (Java) application program snippet targeted for execu-
tion within a web server.

2. EXISTING WORK
There are only few ongoing research projects that have sim-
ilarities with our ideas of invasive computing. In the CAP-
SULE project [10], for example, the authors describe a compo-
nent-based programming paradigm combined with hardware
support for processors with simultaneous multi-threading
(SMT) in order to handle the parallelism in irregular pro-
grams. Here, an application is dynamically parallelized at
run-time. A pure software version of CAPSULE, demon-
strated on an Intel Core 2 Duo processor is presented in [3].
In the TRIPS project [11], an array of small processors is
used for the flexible allocation of resources dynamically to
different types of concurrency, ranging from running a single
thread on a logical processor composed of many distributed
cores to running many threads on separate physical cores.
In the MORPHEUS project [16], heterogeneous dynamically
reconfigurable SoC architectures with various types of recon-
figuration granularity were developed. However, the above
approaches do not touch the major problems of algorith-
mic design and the explicit distribution of workload across
a given architecture.

One particular question addressed in the following is how the
fundamental language constructs of invasive computing and
resource-aware programming, as introduced in subsection 1.1,
can be embedded into existing programming languages and
can be applied to the modeling and functional simulation
of heterogeneous MPSoCs. An instance of such a heteroge-
neous MPSoC is given by the tiled architecture as shown in
Figure 2, including a combination of CPU tiles, application-
specific tightly-coupled arrays (TCPAs), and interconnected
via a network-on-chip (NoC).

Most popular languages and language extensions such as
OpenMP [9] only support shared memory architectures, or
in case of MPI [15], are much too low-level. A parallel pro-
gramming model that fits very well to our envisioned het-
erogeneous tiled architectures is the concept of partitioned
global address space (PGAS). Here, a global memory address
space is logically partitioned to the given set of processors
and tiles, respectively. Thus, locality within a tile can be ex-
ploited. A couple of programming language has been devel-
oped that put the PGAS model into practice: UPC [7] uses
a Single Program Multiple Data (SPMD) model of computa-
tion in which the amount of parallelism is fixed at program
start-up time, hence UPC is unusable for invasive comput-
ing. Fortress [12] is based on functional programming and
features implicit parallelism, which does not support the
invasive computing concept of explicit resource- and load-
awareness. Chapel [5] and X10 [2, 4] on the other hand
offer already basic language constructs, which enable a pro-
grammer to explicitly assign tasks to resources. Chapel was
mainly designed with High Performance Computing (HPC)
in mind, thus we selected X10 as the base for an implemen-
tation of our language for resource-aware programming.

X10 offers the fundamental concepts for the support of dis-
tributed, heterogeneous processor and memory architectures.
In X10, the programmer can create new processes in differ-
ent address spaces called places. A place can be simply one
CPU, or a domain of processors that consists of several nodes
with shared memory communication. A contemporary chip
multi-processor, such as the Intel Xeon six-core architecture,
would be considered one place in X10, whereas a heteroge-
neous hardware architecture would consist of several X10
places. In Figure 2, for example, only within one compute



Figure 2: Generic invasive tiled architecture includ-
ing several so-called loosely-coupled processor tiles
(different types of RISC CPUs), tiles of tightly-
coupled processor arrays (TCPAs) as well as mem-
ory and I/O tiles. Each resource may be associated
one or multiple monitors for capturing, e. g., tem-
perature, faultiness, load, or traffic.

tile, a shared memory model is considered. That is, one tile
corresponds to one X10 place. X10 provides a compiler that
creates not only an executable program but also a run-time
system library to manage the creation of processes and the
data distribution between different places. In the following
sections, we briefly introduce how the concepts of invasive
computing may be integrated into X10 as well as how the
existing X10 run-time system can be employed in order to
model and simulate the dynamic behavior of an application
running on a tiled MPSoC architecture.

3. INVASIVE X10
In the following, we introduce a library-based approach to
invasive programming in X10. While the run-time system
restricts some possibilities, e. g., to manage worker thread
pools, this approach allows to explore invasive computing
and resource-aware programming in general through func-
tional simulation.

3.1 Basic Functionality
Consider the following program fragment, which shows the
three basic constructs invade, infect, and retreat:

val claim = Claim.invade(constraints );
claim.infect(ilet );
claim.retreat ();

The static method Claim.invade takes constraints and re-
turns a claim object, which represents the allocated resources,
a set of processing elements (PEs). A claim provides an
infect method to distribute computations across the PEs.
The argument of infect is an i-let object, which contains
the code to execute together with initial data. The infect
call blocks the program, until all i-let computations finish.

Afterwards, the retreat method frees all resources within a
claim, such that the claim is empty. While such a claim can
still be infected, this would do nothing. Now consider the
ilet variable of the example above. It could be declared as
follows:

val ilet = (id: IncarnationID ) => {
Console.OUT.println ("Hello! ("+id+")");

};

Here, ilet is assigned a function object (declared as an
anonymous X10 function), which takes one argument id,
returns nothing, and prints a greeting to standard output.
We call such a function declaration an i-let candidate, as it
can be used as an i-let, like in the example above. In con-
trast to C/C++, the X10 language does not provide function
pointers but closure objects, which means its free variables
(Console.OUT in our example) are bound to their values from
the lexical environment. This binding is done at the assign-
ment, which means a function object is instantiated that in-
cludes a reference to the Console.OUT object. Such a closure
object is called i-let instance. During the infection, the i-let
instance is copied and distributed to every processing ele-
ment within the claim. By enumeration the infect method
generates incarnation ids and calls the i-let instance func-
tion with these ids as the argument. At this point the i-let
instance becomes an i-let incarnation until the call returns.
The set of all i-let incarnations, which were generated due
to a specific infect invocation, is called a team. Naturally,
a team consists of as many i-let incarnations as there are
processing elements in the corresponding claim.

For resource-aware programming, the application shall adapt
dynamically to the available resources. Hence, the program-
mer specifies the resource needs by defining the constraints
variable in our example and the system as a whole decides
on the actual allocation. In our example, we require between
one and eight processing elements, all in the same place, and
each with a current load of at most 70 percent.

val constraints = new AND();
constraints .add(new PEQuantity (1,8));
constraints .add(new PlaceCoherence ());
constraints .add(new MaximumLoad (0.7 f));

All the available constraints are available as classes to the
programmer. For example, the AND object, which is assigned
to constraints, is a container and specifies that all con-
straints within must be fulfilled. In the code above, the
three constraints are added to this container, so it can be
used for a call to Claim.invade.

3.2 Invasive Command Space
We collected a batch of more than 25 pseudo-code examples
of invasive programming from different areas of parallel and
embedded computing, e. g., image processing, matrix com-
putation, and signal filtering, to design the command space
for the constraint system. Based on this data, the following
constraints were chosen as powerful enough for all needs.

The first class of constraints we identified were so-called
predicate constraints, which specify a predicate for process-
ing elements. An application might require the demanded
processing elements to (1) be under a certain load, (2) be
under a certain temperature, (3) have an FPU, (4) have cer-
tain amount of local memory, (5) have a scratch pad mem-
ory, (6) be of a certain type, (7) have a certain cache size, (8)
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Figure 3: Constraint hierarchy.

be migratable, or (9) not be scheduled preemptively. Such
constraints impose a simple filter operation over the set of
available processing elements within an invade operation.

The second class of constraints are order constraints, which
provide an ordering of processing elements according to (1)
load, (2) temperature, (3) memory, or (4) speed. Using these
constraints an application can communicate its preferences,
whether it is IO- or CPU-bound. By giving multiple of these
constraints, the programmer can impose a secondary or ter-
tiary ordering.

The third class of constraints are set constraints, as they
specify conditions for a set of processing elements as a whole.
The most common constraint is the (1) quantity of process-
ing elements to be claimed, but there are also partition con-
straints, (2) a certain physical layout of the PEs, (3) place
coherence, which means that the PEs have shared memory,
(4) type homogeneity, in terms of the instruction set archi-
tecture, (5) cache type homogeneity.

Additionally, there are the two operators AND and OR to
combine constraints. At last, the programmer can give non-
binding hints, which can be used to hand complex infor-
mation like efficiency curves of parameters to the run-time
system of the underlying MPSoC architecture. These con-
straints are implemented as a class hierarchy as shown in
Figure 3, which is available to the programmer. The con-
straints above form the leafs of the hierarchy tree and ab-
stract classes, drawn as boxes, partition the tree into cate-
gories.

Observing the constraints, one can see that only set con-
straints can fail, as other constraints could simply return
an empty claim. Failing means that a NotEnoughResources

exception is thrown. Since the application should handle
the cases with few resources anyways, it can handle empty
claims usually within the same branch. In contrast, provid-

ing a special exception for empty claims could lead to code
duplication.

The combination of constraints is not trivial. For example,
consider the constraint of a specific 3×3 PE layout and place
coherence. Searching for both at once, it may be possible
to find a place, where enough PEs in the right layout are
available. If the wrong place is selected first, then a layout
may not fit afterwards. If the layout is found, then a place
constraint may fail or reduce the PE set afterwards. So the
most complex constraint in terms of implementation logic
is AND, because for an efficient selection of PEs, it must
use a certain order for the constraint matching. Given a
set of available processing elements, the following steps are
performed:

1. Filter the set according to all predicate constraints in
arbitrary order.

2. Order the PEs according to the order constraints in
their specified priority.

3. Partition the PE set according to all partition con-
straints.

4. Select a partition that matches the quantity constraint.

3.3 Integration Aspects
Invasive computing introduces new ways to express paral-
lelism, so we must investigate the relation to existing con-
structs in X10, which provides async and at. The basic con-
cepts of X10 are the activity, which is a light-weight task,
and the place, which represents shared memory.

async <statement> creates a new activity in the current
place, which executes <statement>, while the current activ-
ity immediately proceeds with the next statement.

at (<p>)<expression> migrates the current activity to an-
other place <p>, where <expression> is evaluated and its
return value is returned by the at at the original place. Un-
der the hood, the X10 compiler generates a closure object
out of <expression> and at has copy semantics concerning
the free variables within.

In summary, async is used for concurrent execution and at
for messaging in a distributed memory system. An X10 ac-
tivity is not a thread in the POSIX sense, as they are man-
aged within the application and the run-time system pro-
vides worker threads for processing activities. This means,
activity creation is very cheap compared to thread creation.

Our invasive programming language provides no primitives
for messaging, apart from an initial data transfer, but an in-
vasion also creates additional activities. However, the con-
cept of a processing element in invasive computing corre-
sponds to a worker thread in X10, so async and infect
manage parallelism on different levels. The current run-time
system hides worker threads, so actual invasive computing
requires changes to the run-time system, which is outside
the scope of the current implementation used for functional
simulation.

3.4 Reinvade and Partial Retreat
Extended concepts of invasive computing are reinvasion, re-
infection and partial retreat. Reinfection is simply to infect
a previously infected claim again. The requirement from the
programmers point of view is that data is not deleted when
a team finishes and leaves the infected processing elements.



However, this is guaranteed, as the system is only allowed
to free resources in the retreat.

Reinvasion is necessary, if an application needs additional
resources at some point. While it is usually better for the
system as a whole to retreat and then invade again, another
process might capture resources in between. Our framework
provides a safe alternative: invade a “delta” claim and then
merge the two claims. Here is an example, how an original
claim can be extended.

val delta = Claim.invade(constraints );
val claim2 = claim + delta;
claim2.infect(ilet2);

The + operator is overloaded to perform the union of the two
PE sets. The infection afterwards, can be understood as a
simultaneous infection of the original and the delta claim,
where the infection id are generated with respect to the
union set. The original claim object is available in addition
to claim2, so it is still possible to infect just the original set
of PEs.

A partial retreat is used, when an application does not need
all allocated resources anymore, but must still keep a part of
its claim. For this case, a claim provides a partialRetreat
method, which takes a constraint (like invade) and retreats
from resources matching this constraint. The following ex-
ample retreats from the set of actually claimed resources to
exactly four processing elements:

claim. partialRetreat (new PEQuantity (4));

Like the invade call, this results in an NotEnoughResources
exception, if claim contains less than four PEs.

3.5 Color Space Transformation Example
The following code is part of an invasive JPEG-decoding
case study. The shown algorithm computes an Irreversible
Color Transform (ICT), which converts an image from the
RGB to the YCbCr color space. In order to speed up this
transformation, the application tries to invade a TCPA ac-
celerator of size 10× 10 PEs.

val img = Image.load (filename );
val c1 = new TCPALayout (10 ,10) ;
val c2 = new TypeConstraint (PEType.TCPA);
val c3 = new PEQuantity (1);
try {

val claim = Claim.invadeAND ([c1 ,c2 ,c3]);
// invasion succeeded
claim.infect ((i:int)=>{

ComponentTransform .forwardIctTCPA (i,
img);

});
} catch (e:NotEnoughResources ) {

// invasion failed , do it locally
ComponentTransform .forwardIctCPU (img);

}

The three constraints specified above require for a claim,
to be suitable, a single TCPA of size 10 × 10 PEs. The ac-
tual transformation code is contained in the forwardIctTCPA
method. If the invasion succeeds, the infect uses the allo-
cated TCPA resource. If it fails, because not enough re-
sources are available in the system, the catch block uses the
forwardIctCPU method as a fallback solution and computes
the code locally and sequentially.

4. FUNCTIONAL SIMULATION
In order to enable the validation of the features of invasive
computing as well as architectural variants when designing
novel MPSoC architectures at an early project state, novel
simulation methodologies are investigated.

In general, amongst others, one can distinguish between ar-
chitectural and functional simulation. In this paper, we fo-
cus on functional simulation, which is a key feature in order
to fundamentally understand the characteristics and bene-
fits of invasive computing. The goal of the functional simu-
lation is to enable early validation of invasive programming
concepts and to allow the investigation of a broad range of
different invasive hardware platforms on a functional layer.
Providing such simulation facilities is important for assist-
ing the optimization process of the underlying concepts, es-
pecially in a project state where full hardware or software
implementations are not yet available.

In our scope, functional simulation of resource-aware par-
allel programs shall mainly provide a support for a) appli-
cation programmers to write invasive application codes, but
also aid b) architectural designers to evaluate resource-aware
concepts when prototyping and dimensioning their future
MPSoC architecture. Hence, at this level, cycle-accurate ar-
chitectural simulation is not only much too slow, but also
not the desired level of abstraction. Possible use cases of
the following simulation concepts are thus to explore dif-
ferent invasion strategies, for instance, based on agents [6,
8] or to investigate the behavior of invasive applications in
competitive scenarios, or to simulate resource-aware behav-
ior such as if a processing element or other resources may
become faulty, overheated, or overloaded. In this section, we
present the design, the implementation, and the usage of our
first realization of such a functional simulation environment
for invasive applications and architectures.

4.1 Functional Simulator:

Concept and Implementation
Our concept and implementation of a functional simulator
uses also the introduced parallel object-oriented program-
ming language X10. It offers many convenient features for
parallel computing as explained in section 2.

Apart from the mentioned programming library for inva-
sive programs, resource-awareness is accomplished by mod-
eling and emulating the state of each hardware resource
explicitly through a concept called hardware threads, see
subsection 4.2 for details. Basically, each hardware resource
of a modeled MPSoC architecture itself is represented by a
light-weight thread so to emulate its important state infor-
mation such as current temperature, load, or traffic.

In order to create a user-definedMPSoC architecture simula-
tion model, we provide a special X10 class in which according
to subsection 4.3, the customized architecture is modeled by
defining the type, properties, and monitor functions of the
desired resources and then creating hardware threads for
each modeled resource.

Putting it all together, the following simulation framework
for resource-aware programming is fully X10-based and its
benefits are threefold: It is available to as well a) application-
programmers for experimenting with invasive algorithmic
and program behaviors, b) operating system and firmware
designers for testing and comparing decisions on load balanc-



ing and resource management, as well c) MPSoC designers
for exploring architectural alternatives and monitor func-
tions and thus for evaluation of architectural design options
such as number and types of tiles, tile processors, etc.

4.2 Hardware Threads
The simulation of the interplay between invasive program
behavior on the one hand and the resulting state of the
underlying processing resources such as their temperature,
load, or faultiness in dependence of its state of invasion on
the other hand, is one of the key features of our functional
simulator.

In order to implement such a functionality, we introduce a
concept called hardware threads for modeling monitorable
resource states. In particular, for each resource in a user-
defined architecture, a light-weight thread is created, which
emulates its state through one or more so-called monitor
functions that explicitly change its dynamic state of param-
eters such as temperature, load, and aging. We will present
a case study of a very simplistic temperature monitor later.

In terms of X10, each hardware thread itself is realized by
an X10 activity similar to each application i-let. In the re-
sulting X10-based simulation, each hardware thread runs in
parallel with the application. The i-lets and the hardware
threads are basically indistinguishable in the resulting X10
simulation run. Once, the applications are started, each call
to the invasive programming library is directed to the simu-
lator in which invasion strategies how to obtain and compose
claims to satisfy the constraints and the assignment of i-lets
to resources in dependence of the state of each available re-
source are implemented. Hence, the simulator class emulates
currently the run-time system of the invasive MPSoC.

The nice thing about this high-level functional simulation
approach is that the X10 programming environment needs
not to be changed and that the interplay between invasive
program behavior and MPSoC customization may be ex-
plored together as desired.

4.3 MPSoC Architecture Modeling
For the functional simulation of the interplay of an invasive
application and a customized invasive MPSoC, it is neces-
sary to describe its structure and configuration in terms of
topology, number of tiles, number and types of resources
within each tile as well as monitors available so to enable
resource-aware programming.

For modeling heterogeneous architectures, we assume and
restrict ourselves to tiled architectures according to Figure 2,
that is, networks of tiles. In general, each tile might be com-
posed again by networks of tiles. However, for simplicity
and according to our current implementation, we restrict
ourselves first to non-hierarchical tiles each of which may
contain several processing elements of potentially different
types and properties, see also Figure 2 as an example. Now,
in order to simulate the dynamic behavior of invasion and
resource-awareness for a specific architecture, the dynamic
state of the resources needs to be simulated, too. For this
purpose, the initialization and customization of an individ-
ual MPSoC and its properties is done in the initialization of
a special simulator class created for this purpose.

The following X10 code listing gives an example of how to
construct a simulator that is able to simulate invasive pro-

grams and resource-awareness for an MPSoC composed of
just a single tile that consists of four equal processing ele-
ments, see, e. g., the lower right tile in Figure 2.

// create a new architecture
val arch = new Architecture ();
// create a new tile within this
// architecture
val tile = arch. createTile ();

// create four PEs within the tile
for (i=0; i<4; i++){

val pe = tile. createPE ();
// specify the properties of the PE

pe.peType = PEType.RISC ;
pe.cacheType = CacheType .

FourWayAssociative ;
pe.localMem = 2048; // KiB
pe. scratchPadMem = 128; // KiB
pe. clockFrequency = 1500; // MHz
pe. isMigratable = false;
pe. isPreemptible = false;
pe.hasFPU = true ;

}

As shown in the above listing, one can specify a number
of static properties for each processing element, which can
later be used in predicate constraints within each invade
command. Furthermore, in order to be able to simulate
the dynamic state of each processing element such as its
load and temperature, each resource may be assigned one or
more individual user-defined monitor-functions that is acces-
sible via constraints. In the simulation framework, different
monitor-functions may be assigned to each hardware thread
that corresponds to a processing element in a one-to-one
manner.

In the following code listing, a very simple monitor func-
tion simulating the temperature evolution of a processing
element is shown. In case the PE is infected, its tempera-
ture is increased every 200ms until a threshold is reached.
Elsewise, if the PE is in idle mode, the temperature is de-
creased until an idle temperature is reached. In order to
simulate the increase of temperature, the method must be
called periodically during simulation. This is achieved by
periodic activation of each monitor function.

val temp = temp_idle ;
while(pe.isActive ) {

if(pe.isInfected ) {
if(temp < temp_threshold )

temp = temp + delta_temp ;
} else {

if(temp > temp_idle )
temp = temp - delta_temp ;

}
System.sleep (200); // ms

}

Finally, in our simulation framework each modeled tile is
mapped to an X10 place. Using the above construction, one
can describe very customized architectures and define cus-
tomized architecture properties and resource monitor func-
tions very easily.

In our current implementation, only non-hierarchical tiles
and PEs can be specified within an architecture, but no



user-defined communication topologies as well as hierarchi-
cally nested architectures. These foreseen capabilities will
be added to the simulator implementation at a later stage.

4.4 Case Study:

Temperature-Aware Load Balancing
The following code fragment is part of the implementation
of an invasive parallel histogram calculation algorithm for
image frames. The algorithm obtains as input an array of
integers describing pixel intensities and basically counts the
number of occurrences of each integer number and saving
this value in an output (histogram) array. Obviously, this
algorithm can be easily parallelized by just tiling the input
array into equal stripes and by mapping these individual
stripes to different processing elements which compute the
histogram on their parts of the array so to generate a par-
tial result. At the end, these partial results have to be only
summed up so to obtain the desired histogram.

In the following invasive code fragment, the above algorithm
is implemented to perform a batch processing of histogram
calculations for a sequence of frames until a user-defined ter-
mination criterion is reached. The workload caused by an
image frame of size 1024 × 1024 is represented here by an
array of equal size and initialized (just for simplicity) by
random integer values from 0 to 255. The histogram cal-
culation is then distributed over two out of four processing
elements of type RISC, which shall be located in the same
tile according to Figure 2 so to share the same local pixel
memory. The workload is partitioned into two parts and dis-
tributed to the processing elements using distributed arrays
of X10 (code not shown). Inside each histogram i-let, the
distributed array access is restricted to those values which
are mapped to the proper processing element. In order to
collect the created partial results from the processing ele-
ments, remote arrays are used. Before execution, a remote
array of the size of the global result array is created on the
home place on each processing element. Each i-let then cal-
culates its partial result in its remote array. After execution,
the values from the remote arrays are collected in a serial
manner and added finally to the global result array.

// start the simulator initializing all
// hardware threads and their monitors
Simulator .init ();

// create a (random) workload
val rnd = new Random ();
val workload = new Array[Int ]((0..1023)

*(0..1023) ), (Point) => rnd.nextInt
(255));

// specify the constraints
val c = new AND();
c.add(new TypeConstraint (PEType.RISC));
c.add(new PEQuantity (2));
c.add(new MaximumTemperature (80) );
c.add(new PlaceCoherence ());

// main loop processing histogram batch
// requests until user termination

while (! terminated ) {
// invade
val claim = Claim.invade(c);

// distribute the workload to the PEs
...

// prepare a result array on each PE

...

// code for the histogram (i-let)
val code = (id: IncarnationID ) => {

for ([i,j] in workloadPart )
partialResult (workloadPart (i,j))++;

};

// infect
claim.infect(code );
// collect results from the PEs
...

// retreat
claim.retreat ();

}

// shutdown the simulator
Simulator .exit ();

Please note that the above invasive program for histogram
computation is resource-aware in the sense that claims are
built by the run-time system so as to guarantee all speci-
fied constraints. In the above example, a claim shall contain
exactly two RISC-type processors the temperature of which
must not exceed 80◦ Celsius at invasion time.

Our implementation of the simulator class allows also to
record the execution profile of an invasive X10 program: In
Figure 4, an automatically generated Gantt chart is shown
for the invasive histogram application. One can observe that
the second histogram calculation run is performed on differ-
ent processing elements than the first iteration, because the
temperature of previously assigned processors has obviously
exceeded the specified limit of 80◦ Celsius. Hence, migrating
strategies as part of the underlying run-time system may be
easily incorporated and simulated for correctness of behavior
and also quantitatively. As such, even if the time axis does
not present real machine cycles of the user-specified platform
emulated by hardware threads but rather the wall clock time
of the platform where the X10 simulation has been run, not
only different invasion strategies may be explored and visu-
alized, but also different architectural platform settings and
novel monitor concepts may be tested. Also, the (relative)
times required for invasion, infection, and retreat from re-
sources, obviously determining the overhead of invasive vs.
non-invasive statically allocated programs, may be put into
perspective.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we introduced a language implementation of
invasive computing using the X10 programming language
as well as a first framework to compile and functionally
simulate resource-aware invasive programs on a dedicated
MPSoC platform, using the concept of hardware threads
and monitor functions. In summary, our framework of X10-
based functional simulation of invasive programs shall be
used as an early test-bed for resource-aware programming of
individual MPSoC architectures at a stage much earlier then
their design. Hence, we expect a true and threefold bene-
fit for as well a) application-programmers as b) operating



Figure 4: Gantt chart of the execution of the resource-aware parallel histogram batch processing application
claiming 2 PEs for each job processed on a 4 PE tile according to the lower right tile in Figure 2. The decision
which PEs are claimed for the execution of each job is done inside the corresponding invasion intervals [t1, t2],
[t3, t4], and [t5, t6]. It can be seen that according to the max. temperature constraint of 80◦C, e. g., reached
by PE1 and PE2 in interval [t3, t4], the individual resource invasion for each job may lead to different PE
assignments.

system and run-time system developers and c) architecture
designers of next generations MPSoC platforms.

In the future, we would like to extend this framework to also
include the modeling and the simulation of other resources
such as the invasion of memories and communication re-
sources (e. g., NoCs) and to provide a proper timing model
such that design space explorations of invasive applications
and architectures shall become possible.
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