SSA-based Register Allocation with PBQP

Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch

Karlsruhe Institute of Technology (KIT)
{buchwald,zwinkau}@kit.edu thomas.bersch@student.kit.edu

Abstract. Recent research shows that maintaining SSA form allows to
split register allocation into separate phases: spilling, register assign-
ment and copy coalescing. After spilling, register assignment can be
done in polynomial time, but copy coalescing is NP-complete. In this pa-
per we present an assignment approach with integrated copy coalescing,
which maps the problem to the Partitioned Boolean Quadratic Problem
(PBQP). Compared to the state-of-the-art recoloring approach, this re-
duces the relative number of swap and copy instructions for the SPEC
CINT2000 benchmark to 99.6% and 95.2%, respectively, while taking
19% less time for assignment and coalescing.

Keywords: register allocation, copy coalescing, PBQP

1 Introduction

Register allocation is an essential phase in any compiler generating native code.
The goal is to map the program variables to the registers of the target archi-
tecture. Since there are only a limited number of registers, some variables may
have to be spilled to memory and reloaded again when needed. Common regis-
ter allocation algorithms like Graph Coloring [3,6] spill on demand during the
allocation. This can result in an increased number of spills and reloads [11]. In
contrast, register allocation based on static single assignment (SSA) form allows
to completely decouple the spilling phase. This is due to the live-range splits
induced by the ¢-functions, which render the interference graph chordal and
thus ensure that the interference graph is k-colorable, where k is the maximum
register pressure.

The live-range splits may result in shuffle code that permutes the values (as
variables are usually called in SSA form) on register level with copy or swap
instructions. To model this circumstance, affinities indicate which values should
be coalesced, i.e. assigned to the same register. If an affinity is fulfilled, inserting
shuffle code for the corresponding values is not necessary anymore. Fulfilling such
affinities is the challenge of copy coalescing and a central problem in SSA-based
register allocation.

In this work we aim for a register assignment algorithm that is aware of affini-
ties. In order to model affinities, we employ the Partitioned Boolean Quadratic
Problem (PBQP), which is a generalization of the graph coloring problem.

In the following, we

— employ the chordal nature of the interference graph of a program in SSA form
to obtain a linear PBQP solving algorithm, which does not spill registers,
but uses a decoupled phase instead.

— integrate copy coalescing into the PBQP modelling, which makes a separate
phase afterwards unnecessary.

— develop a new PBQP reduction to improve the solution quality by merging

two nodes, if coloring one node implies a coloring of the other one.

introduce an advanced technique to handle a wide class of register constraints
during register assignment, which enlarges the solution space for the PBQP.

— show the competitiveness of our approach by evaluating our implementation
for quality and speed. Additionally, some insight into our adaptations is
gained by interpreting our measurements.

In Section 2 we describe related register allocation approaches using either
SSA form or a PBQP-based algorithm, before we combine both ideas in Sec-
tion 3, which shows the PBQP algorithm and our adaptations in detail. Section 4
presents our technique to handle register constraints. Afterwards, an evaluation
of our implementation is given in Section 5. Finally, Section 6 describes future
work and Section 7 our conclusions.

2 Related Work

2.1 Register allocation on SSA form

Most SSA-based compilers destruct SSA form in their intermediate represen-
tation after the optimization phase and before the code generation. However,
maintaining SSA form provides an advantage for register allocation: Due to the
live-range splits that are induced by the ¢-functions, the interference graph of
programs in SSA form is chordal [4,1,13], which means every induced subgraph
that is a cycle, has length three. For chordal graphs the chromatic number is
determined by the size of the largest clique. This means that the interference
graph is k-colorable, if the spiller has reduced the register pressure to at most
k at each program point. Thus, spilling can be decoupled from assignment [13],
which means that the process is not iterated as with Graph Coloring.

To color the interference graph we employ the fact that there is a perfect
elimination order (PEO) for each chordal graph [7]. A PEO defines an ordering
< of nodes of a graph G, such that each successively removed node is simplicial,
which means it forms a clique with all remaining neighbors in G. After spilling,
assigning the registers in reverse PEO ensures that each node is simplicial and
thus has a free register available. Following Hack, we obtain a PEO by a post-
order walk on the dominance tree [11].

In addition to ¢-functions, live-range splits may originate from constrained
instructions. For instance, if a value is located in register R1, but the constrained
instruction needs this value in register R2, we can split the live-range of this

value. More generally, we split all live-ranges immediately before the constrained
instruction to allow for unconstrained copying of values into the required registers
and employ copy coalescing to remove the overhead afterwards. With this in
mind, we add affinity edges to the interference graph, which represent that the
incident nodes should be assigned to the same register. Each affinity has assigned
costs, which can be weighted by the execution frequency of the potential copy
instruction. The goal of copy coalescing is to find a coloring that minimizes
the costs of unfulfilled affinities. Bouchez et al. showed that copy coalescing for
chordal graphs is NP-complete [1]|, so one has to consider the usual tradeoff
between speed and quality.

Grund and Hack [10] use integer linear programming to optimally solve the
copy coalescing problem for programs in SSA form. To keep the solution time
bearable some optimizations are used, but due to its high complexity the ap-
proach is too slow for practical purposes.

In contrast, the recoloring approach from Hack and Goos [12] features a
heuristic solution in reasonable time. It improves an existing register assign-
ment by recoloring the interference graph. Therefore, an initial coloring can be
performed quickly without respect to quality. To achieve an improvement, the
algorithm tries to assign the same color to affinity-related nodes. If changing
the color of a node leads to a conflict with interfering neighbors, the algorithm
tries to solve this conflict by changing the color of the conflicting neighbors. This
can cause conflicts with other neighbors and recursively lead to a series of color
changes. These changes are all done temporarily and will only be accepted, if a
valid recoloring throughout the graph is found.

Another heuristic approach is the preference-guided register assignment in-
troduced by Braun et al. [2]. This approach works in two phases: in the first
phase the register preferences of instructions are determined and in the second
phase registers are assigned in consideration of these preferences. The preferences
serve as implicit copy coalescing, such that no extra phase is needed. Further-
more, the approach does not construct an interference graph. Preference-guided
register assignment is inferior to recoloring in terms of quality, but significantly
faster.

2.2 PBQP-based register allocation

The idea to map register allocation to PBQP was first implemented by Scholz
and Eckstein [16] and features a linear heuristic. Since their implementation does
not employ SSA form, they need to integrate spilling into their algorithm. Hames
and Scholz [14] refine the approach by presenting a new heuristic and a branch-
and-bound approach for optimal solutions. The essential advantage of the PBQP
approach is its flexibility, which makes it suited for irregular architectures.

3 PBQP

3.1 PBQP in general

The PBQP is a special case of a Quadratic Assignment Problem and essentially
consists of multiple interdependent choices with associated costs. While the prob-
lem can be expressed formally [8], a graph-based approach is more intuitive. Each
graph node has an associated choice vector, which assigns each alternative its
cost in R. For each node only one alternative can be selected. Interdependencies
are modeled by directed edges with an associated matrix, which assigns a cost
to each combination of alternatives in RU{oco}. Naturally, a node with n choices
and one with m choices have cost vectors of dimension n and m, respectively. An
edge between them must have a corresponding matrix of size n x m. If we select
the i-th alternative at the source node and the j-th alternative at the target
node, we implicitly select the entry at the i-th row and j-th column of the edge
matrix.

A selection assigns each node one of its alternatives. This also implies a
matrix entry for each edge. The cost of a selection is the sum of all chosen vector
and matrix entries. If this cost is finite, the selection is called a solution. The
goal of the PBQP is to find a solution with minimal cost.

B oo

oo 0

0 oo
00
Fig. 1: PBQP instance for 3-coloring.

Figure 1 shows a PBQP instance for 3-coloring. Each node u, v, and w
has three alternatives that represent its possible colors. Due to the edge matri-
ces, each solution of the PBQP instance has to select different colors for adja-

cent nodes and thus represents a valid 3-coloring. The reduction from 3-coloring
to PBQP renders PBQP NP-complete. Additionally, it shows that finding any

PBQP solution is NP-complete, since each solution is optimal. However, our al-
gorithm can still solve all of our specific problems in linear time as we show in
Section 3.4.

3.2 PBQP construction

As mentioned above, SSA-based register allocation allows to decouple spilling
and register assignment, such that register assignment is essentially a graph
coloring problem. In Figure 1 we show that PBQP can be considered as a gener-
alization of graph coloring by employing color vectors and interference matrices:

Color vector The color vector contains one zero cost entry for each possible
color.

(000)"

Interference matrix The matrix costs are set to co, if the corresponding colors
are equal. Otherwise, the costs are set to zero.

oo 0 0
0 o0 0
0 0

Register allocation can be considered as a graph coloring problem by iden-
tifying registers and colors. In order to integrate copy coalescing into register
assignment, we add affinity edges for all potential copies, which should be pre-
vented.

Affinity matrix The matrix costs are set to zero if the two corresponding regis-
ters are equal. Otherwise, the costs are set to a positive value that represents
the cost of inserted shuffle code.

011
101
110

A PBQP instance is constructed like an interference graph by inspecting the
live-ranges of all values. The values become nodes and get their corresponding
color vectors assigned. For each pair of interfering nodes an interference matrix is
assigned to the edge between them. Likewise, the affinity cost matrix is assigned
to an edge between a pair of nodes, which should get the same register assigned.
If a pair of nodes fulfills both conditions, then the sum of both cost matrices is
assigned. While the copy cannot be avoided in this case, there may still be cost
differences between the register combinations.

3.3 Solving PBQP instances

Solving the PBQP is done by iteratively reducing an instance to a smaller in-
stance until all interdependencies vanish. Without edges every local optimum is

also globally optimal, so finding an optimal solution is trivial (unless there is
none). By backpropagating the reductions, the selection of the smaller instance
can be extended to a selection of the original PBQP instance. Originally, there
are four reductions [5,9,16:

RE: Independent edges have a cost matrix that can be decomposed into two
vectors u and v, i.e. each matrix entry Cj; has costs u; 4+ vj. Such edges
can be removed after adding w and v to the cost vector of the source and
target node, respectively. If this would produce infinite vector costs, the
corresponding alternative (including matrix rows/columns) is deleted.

o—o — o o

R1: Nodes of degree one can be removed, after costs are accounted in the
adjacent node.

o—0 — ®

R2: Nodes of degree two can be removed, after costs are accounted in the
cost matrix of the edge between the two neighbors; if necessary, the edge is
created first.

o—0o o — o6 —0©

RN: Nodes of degree three or higher. For a node u of maximum degree we
select a locally minimal alternative, which means we only consider u and its
neighbors. After the alternative is selected, all other alternatives are deleted
and the incident edges are independent, so they can be removed by using
RE.

AT

RE, R1, and R2 are optimal in the sense that they transform the PBQP
instance to a smaller one with equal minimal costs, such that each solution of
the small instance can be extended to a solution of the original instance with
equal costs. For sparse graphs these reductions are very powerful, since they
diminish the problem to its core. If the entire graph can be reduced by these
reductions, then the resulting PBQP selection is optimal. If nodes of degree three
or higher remain, the heuristic RN ensures linear time behavior.

Hames et al. [14] introduced a variant of RN that removes the corresponding
node from the PBQP graph without selecting an alternative. Thus, the decision
is delayed until the backpropagation phase. We will refer to this approach as late
decision. The other approach is early decision, which colors a node during RN.
In this paper we follow both approaches and we will show which one is more
suitable for SSA-based register allocation.

3.4 Adapting the PBQP solver for SSA-based Register Allocation

In the context of SSA-based register allocation, coloring can be guaranteed to
succeed, if done in reverse PEO with respect to the interference graph. This
seems to imply that our PBQP solver must assign registers in reverse PEO.
However, we show in the following that this restriction is only necessary for
heuristic reductions. Therefore, choosing a node for heuristic decision must use
the last node of the PEO for early decision and the first node of the PEO for late
decision. This different selection of nodes is needed, because the backpropagation
phase inverts the order of the reduced nodes.

Early application of optimal reductions There is a conflict between the
necessity to assign registers in reverse PEO and the PBQP strategy to favor
RE, R1, and R2 until only RN is left to apply. Fortunately, we can show that
the application of this reductions preserves the PEO property with Theorem 1
below.

Lemma 1. Let P be a PEO of a graph G = (V, E) and H = (V', E’) an induced
subgraph of G, then P|y is a PEO of H.

Proof. For any node v € H let V,, = {u € Ng(v) | u > v} be the neighbor nodes
in G behind in P and respectively V, = {u € Ng(v) | v > v}. By definition
V. CV,. V, is a clique in G, therefore V/ is a clique in H and v is simplicial,
when eliminated according to P|y-. O

From Lemma 1 we know, that R1 preserves the PEO, since the resulting
graph is always an induced subgraph. However, R2 may insert a new edge into
the PBQP graph.

Lemma 2. Let P be a PEO of a graph G = (V,E) andv € V a vertex of degree
two with neighbors u,w € V. Further, let H=(V’,E’) be the subgraph induced by
V' \ {v}. Then P|y/ is a PEO of H = (V',E" U {{u,w}}).

Proof. If {u,w} € E this follows directly from Lemma 1, since no new edge is
introduced. In the other case, we assume without loss of generality u < w. Since
{u,w} ¢ E, v is not simplicial and we get u < v. Therefore, the only neighbor
node of v in H behind in P must be v. Within H’ the node w is the only neighbor
of u behind in the PEO, hence u is simplicial. For the remaining nodes v and w
the lemma follows directly from Lemma 1. O

With Lemma 2 the edge inserted by R2 is proven harmless, so we can derive
the necessary theorem now. Remember that the PEO must be derived from the
interference graph, while our PBQP graph may also include affinity edges.

Theorem 1. Let G = (V, E) be a PBQP graph, i(E) the interference edges in
E, i.e. edges that contain at least one infinite cost entry, P a PEO of (V,i(E))
and H = (V', E') the PBQP graph G after exhaustive application of RE, R1 and
R2. Further, let E; be the interference edges that are reduced by RE. Then, P|y-
is a PEO of (V',i(E'") U E;).

() (29 (@

(a) PBQP instance that cannot be reduced (b) PBQP instance after merging V'
further by RE, R1 or R2. into U.

Fig. 2: Example of an RM application.

Proof. If at least one affinity edge is involved in a reduction, there is no new
interference edge and we can apply Lemma 1. If we consider only interference
edges, Lemma 1 handles R1 and Lemma 2 handles R2. Applying RE for an
interference edge moves the interference constraint into incident nodes. Thus,
we have to consider such edges F; for the PEO. O

Merging PBQP nodes The PBQP instances constructed for register assign-
ment contain many interference cliques, which cannot be reduced by optimal
reductions. This implies that the quality of the PBQP solution highly depends
on the RN decisions. In this section we present RM, a new PBQP reduction that
is designed to improve the quality of such decisions.

Figure 2a shows a PBQP instance that cannot be further reduced by ap-
plication of RE, R1 or R2. Hence, we have to apply a heuristic reduction. We
assume that the PEO selects U to be the heuristically reduced node. The new
reduction is based on the following observation: If we select an alternative at
U, there is only one alternative at V' that yields finite costs. Thus, a selection
at U implicitly selects an alternative at V. However, the affinities of V' are not
considered during the reduction of U. The idea of the new reduction is to merge
the neighbor V into U. After the merge, U is also aware of V’s affinities which
may improve the heuristic decision.

To perform the merge, we apply the RM procedure of Algorithm 1 with
arguments v = V and u = U. In line 2 the algorithm chooses w =Y as adjacent

Algorithm 1 RM merges the node v into the node u. The notation is adopted
from [16].
Require: a selection at u implies a specific selection at v.

1: procedure RM(v, u)

2: for all w € adj(v) do

3: if w # u then

4: for i < 1 to |cu| do

o: c+ 0

6: if ¢, (7) # oo then

7 v < Imin(Cuw(i,:) + €ov)
8: ¢+ Cuuw(iv,:)

9: A(i,:) < ¢

10: Cuw +— Cuw + A

11: remove edge (v, w)

12: Reducel(v)

node. We now want to replace the affinity edge (v, w) by an edge (u,w). In lines
4-9 we create a new matrix A for the edge (u,w). To construct this matrix we
use the fact that the selection of an alternative i at u also selects an alternative i,
at v. Thus, the i-th row of A is the 7,-th row of C,,,,. For our example this means
that we have to swap the rows for R0 and R1 in order to obtain A from C,,,.
Since (u,w) does not exist, we create the edge with the matrix A. Afterwards
we delete the old edge (v, w).

In the next iteration, the algorithm chooses w = W as adjacent node. Similar
to the previous iteration, we compute the matrix A. Since the edge (u, w) exists,
we have to add A to the matrix Cy,,. After the deletion of (v,w), the node
v has degree one and can be reduced by employing R1. Figure 2b shows the
resulting PBQP instance. Due to the merge the edge (U, W) is independent.
After removing the edge the PBQP instance can be solved by applying R1 and
R2, leading to an optimal solution.

Although RM is an optimal reduction, we only apply it immediately before
a heuristic reduction at a node U. If there is a neighbor V' of U that can be
merged into U we apply RM for these two nodes. This process iterates until no
such neighbor is left. In some cases—like our example—the RM allows further
optimal reductions that supersede a heuristic reduction at U. If U still needs a
heuristic reduction, the neighbors of the merged nodes are also considered by
the heuristic and thus can improve the heuristic decision.

The reason for applying RM only immediately before a heuristic decision at a
node w is that in this case each edge is reassigned only once, due to the fact that
the node u (and all incident edges) will be deleted after the merge. Thus, each
edge is considered at most twice: once for reassignment, and once during the
reduction of u. As a result, the overall RM time complexity is in O(mk?) where
m = |E| is the number of edges in the PBQP graph and k is the maximum
number of alternatives at a node. The same argument can be used to show
that the overall RN time complexity is in O(mk?). Together with the existing

optimal reductions this leads to an overall time complexity in O(nk® + mk?)
where n = |V| denotes the number of nodes in the PBQP graph [5,16]. Since k
is the constant number of registers in our case, the solving algorithm has linear
time complexity.

Similar to the other PBQP reductions, RM modifies the PBQP graph and
thus we have to ensure that our PEO is still valid for the resulting graph.

Theorem 2. Let G = (V, E) be a PBQP graph, i(E) the interference edges in
E, P a PEO of (V,i(E)) and H = (V', E’) the PBQP graph G after exhaustive
application of RM and the reduction of the greatest node u with respect to P.
Further, let E; be the interference edges that are reduced by RE. Then, Ply/ is
a PEO of (V'Ji(E")UE;).

Proof. If u is reduced by RN or R1 this follows from Lemma 1. In the R2 case,
let v be the last node whose merge changed u’s degree. The theorem follows from
applying Lemma 1 for v and all nodes that are merged before v and Lemma 2
for v and all nodes that are merged after v. Independent edges will be handled
as in Theorem 1. a

4 Register Constraints

For SSA-based register allocation, naive handling of register constraints can
inhibit a coloring of the interference graph. For example, Figure 3a shows an
instruction instr with three operands and two results. The operands I; and
I, are live before the instruction, but are not used afterwards, so they die at
the instruction. In constrast, operand I5 is used afterwards (as indicated by the
dashed live-range) and interferes with both results. We assume that a, b and c are
the only available registers. The values are constrained to the annotated registers,
for instance, the operand I is constrained to registers {a, b}. However, a previous
instruction may impose the constraint {c} on I;. Since both constraints are
contradictory, there is no coloring of the interference graph. To prevent such
situations, Hack splits all live-ranges before the constrained instruction [11]. For
our example, this allows to fulfill the constraints by inserting a copy from register
¢ to register a or b.

The next problem is that a PEO ensures a k-coloring only for unconstrained
nodes. For example, we can derive the coloring order Iy, Is, I3, O1, O from a
PEO of Figure 3a, but assigning ¢ to Iy inhibits a valid register assignment. To
tackle this issue we employ the fact that if we obtain the PEO by a post-order
walk of the dominance tree, the values live before and immediately after the
constrained instruction are colored first. Thus, if we provide a coloring for these
nodes, we can use our PEO to color the remaining nodes. Hack showed [11] how
such a coloring can be found in the case of simple constraints, i.e. if each value
is either constrained to one register or unconstrained. In case of a value with
a non-simple constraint, the interference cliques before and after the statement
are colored separately and values with non-simple constraints are pinned to the

chosen color. This may increase the register demand, but ensures a valid register
allocation.

Simple constraints can easily be integrated into the PBQP solving algorithm,
since we only have to ensure that operands which are live after the constrained
instruction are colored first. However, pinning the values to a single register is
very restrictive. In the following, we assume that the spiller enables a coloring
by inserting possibly necessary copies of operands and present an algorithm that
can deal with hierarchic constraints.

Definition 1 (hierarchic constraints). Let C be a set of register constraints.
C s hierarchic if for all constraints C1; € C and Cs € C holds:

ClﬂCgsé(ZJ:ClgCg\/ng(Jl.

This definition excludes “partially overlapping” constraints, like C1 = {a, b}
and Cy = {b,c}. As a result, the constraints form a tree with respect to strict
inclusion, which we call constraint hierarchy. For instance, the constraint hi-
erarchy for the general purpose registers of the TA-32 architecture consists of
Can = {A,B,C,D,SI,DI}, a subset Cs = {A, B,C, D} for instructions on 8-
or 16-bit subregisters, and all constraints that consist of a single register.

For hierarchic constraints we obtain a valid register assignment of an inter-
ference clique by successively coloring a most constrained node. However, for
a constrained instruction we also have to ensure that after coloring the values,
which are live before an instruction instr, we still can color the values live after
instr. In Figure 3a Oy and O are constrained to a and b, respectively, and thus
¢ must be assigned to I3. Unfortunately, ¢ may also be chosen for I according
to its constraints, if it is colored before I3. To avoid such situations, we want
to modify the constraints in a way that forces the first two operands to use the
same registers as the results. This is done in three steps:

1. Add unconstrained pseudo operands/results until the register pressure equals
the number of available registers.

2. Match results and dying operands to assign result constraints to the corre-
sponding operand, if they are more restrictive.

3. Try to relax the introduced constraints of the previous step, to enable more
affinities to be fulfilled.

The first step ensures that the number of dying operands and the number of
results are equal, which is required by the second step. For our example in
Figure 3a we have nothing to do, since the register pressure before and after
instr is already equal to the number of available registers.

4.1 Restricting operands

We employ Algorithm 2 for the second step. The algorithm has two parameters:
A multiset of input constraints and a multiset of output constraints. It iteratively
pairs an input constraint with an output constraint. For this pairing we select

{a,b} {a,b,c} {a,b,c} {a} {b} {a,b,c}

I Iz I3 I Iy I3

T T

! !

| |

| |

instr | instr |

| |

O1 O l O: O: l

{a} {0} {a} {0}

(a) Constrained instruction. (b) Constraints after transferring

result constraints to operands.

{a,b,c} {a,b,c} {c} {a,b} {a,b,c} {c}
11 12 13 [1 12 13
! !
! !
| |
nstr | nstr |
: :
O 02 } O 02 }
{a} {o} {a} {o}
(c) Constraints after relaxation of (d) Final constraints for PBQP
operand constraints. construction.

Fig. 3: Handling of constrained instructions.

a minimal constraint (with respect to inclusion) Cy,in. Then we try to find a
minimal partner Cpqriner, Which is a constraint of the other parameter such that
Cmin € Chartner- If Cpipn is an output constraint we transfer the constraint to
the partner. It is not necessary to restrict output constraints, since the inputs
are colored first and restrictions propagate from there.

For our example in Figure 3a the algorithm input is {I1, Iz} and {O1, O2}.
The constraints of O; and Oy are both minimal. We assume that the function
getMinimal Element chooses O and thus Cp,;, = {a}. Since O; is a result,
the corresponding partner must be an operand. We select the only minimal
partner I; which leads to Cpariner = {a,b}. We now have our first match (I3, O1)
and remove both values from the value sets. Since the result constraint is more
restrictive, we assign this constraint to the operand I;. In the next iteration we

Algorithm 2 Restricting constraints of input operands.

1: procedure RESTRICTINPUTS(Ins, Outs)

2: C < InsU Outs

3 while C # 0 do

4 Cmin < getMinimal Element(C)

5: Chpartner < getMinimal Partner(C, Cpin)
6: C+C \ {szn, Cpartner}

7: if Cpartner from Ins then

8 assign Chin to partner value

match I and Oy and restrict I to {b}. The resulting constraints are shown in
Figure 3b. Due to the introduced restrictions, the dying operands have to use
the same registers as the results.

In the following, we prove that getMinimal Partner always finds a minimal
partner. Furthermore, we show that Algorithm 2 cannot restrict the operands
constraints in a way that renders a coloring of the values, which are live before
the instruction, impossible.

Theorem 3. Let G = (V =ZUO, E) a bipartite graph with T = {Iy,...,1,}
and O = {04,...,0,}. Further, let R = {Ry,...,R,} be a set of colors (reg-
isters) and constr : V. — P(R) a function that assigns each node its feasible
colors. Moreover, let ¢ : v — R, € constr(v) be a coloring of V that assigns each
color to exactly one element of T and one element of O. Let M C E be a perfect
bipartite matching of G such that

{u,v} € M = c(u) = c(v).

Then, Algorithm 2 finds a perfect bipartite matching M’ such that there is a
coloring ¢ : v — R. € constr(v) that assigns each color to exactly one element
of T and one element of O with

{u,v} € M" = ' (u) = (v).

Proof. We prove the theorem by induction on n. For n = 1 there is only one
perfect bipartite matching and since ¢(I;) = ¢(O1) € (constr(Iy) N constr(0y))
we have constr(I1) C constr(Oy) or constr(01) C constr(I). Thus, Algorithm 2
finds the perfect bipartite matching which can be colored by ¢’ = c.

For n > 1, without loss of generality, we can rename the nodes such that
Vi : ¢(I;) = ¢(O;) and Algorithm 2 selects O; as node with minimal constraints.
If the algorithm selects I; to be the minimal partner, we can remove I; and O
from the graph, the color ¢(17) from the set of colors R and apply the induction
assumption.

In case the algorithm does not select I; as minimal partner let I, be the
minimal partner. Our goal is to show that there is a coloring for

M" = (MA\A{{I1,0:}, {1, Op}}) U{{11, Op}, {1, O1}}

and then apply the induction assumption. To obtain such a coloring we consider
the corresponding constraints. Since O; has minimal constraints and c¢(I;) =
¢(01) € (constr(Iy) N constr(01)), we get constr(0O1) C constr(Iy). Further-
more, we know that I, is the minimal partner of O; which means constr(O;) C
constr(I,) by definition. Thus, we get () # constr(O1) C (constr(I1)Nconstr(I,))
and since I, is the minimal partner of Oy, we get constr(I,) C constr(Iy). Using
these relations, we obtain

¢(0n) € constr(01) C constr(Iy)

c(0p) = c(Ip) € constr(I,) C constr(Iy).

Thus, ¢' = c[I1 — ¢(0,),I, — ¢(01)] is a coloring for M". We now remove
{I,,01} from the graph and ¢’(O;) from the set of colors R and apply the
induction assumption, resulting in a matching M’ and a coloring ¢”’. Since ¢”
does not use the color ¢”(01), we can extend the matching M" to

M’ = M" U{I,, 01}

and the corresponding coloring ¢’ to

o) = {c"(on v € (L, 01)

"(v) ,otherwise

so {u,v} € M' = ¢/(u) = /(v) holds. O

4.2 Relaxing constraints

The restriction of the operands ensures a feasible coloring. However, some of the
operands may now be more restricted than necessary, so the third step relaxes
their constraints again. For instance, in Figure 3b the operands I; and I are
pinned to register a and b, respectively, but assigning register b to I; and register
a to Iy is also feasible. To permit this additional solution, the constraints can
be relaxed to {a,b} for both operands. In the following, we provide some rules
that modify the constraint hierarchy of the input operands in order to relax
the previously restricted constraints. We introduce two predicates to determine
whether a rule is applicable or not.

Dying A node is dying if the live-range of the operand ends at the instruction.
Its assigned register is available for result values.

Saturated A constraint C is saturated, if it contains as many registers |C| as
there are nodes, which must get one of those registers assigned [{I € T |
C1 C C}|. This means, every register in C' will be assigned in the end.

Figure 4 shows the transformation rules for constraint hierarchies. The rules are
applied greedily from left to right. A constraint C; is underlined if it is saturated.
Each constraint has a set of dying nodes Z; and a set of non-dying nodes Z;.

T Iy

T1UZs

g @ Ci1UCy

(a) Merging two saturated con-
straints consisting of dying nodes.

C1

Ly

T, UTs

Co

Ch Ci
L,UIy I,
=
I
Gy G i\

(b) Restricting non-dying nodes due
to a saturated constraint.

Ch

TiUZy

13

Cs

(¢) Moving dying nodes along
the constraint hierarchy.

{a,b, c} {a,b,c}
{I3} 1o {15}
=
1L} ({2} {6, I}
{a} {4} {a,b}

4b

{a,b,c} {a, b, c}
4c th. fo}
=

{h, L2} | | {5} {15}
{a,0} {g {c}

(d) Application of the transformation rules to relax the operand constraints

shown in Figure 3b.

Fig. 4: Rules to relax constraints and a usage example.

The rule shown in Figure 4a combines two saturated constraints that contain
only dying nodes. Applying this rule to the constraint hierarchy of our example
in Figure 3b lifts the constraints of I; and I to {a,b}. Since both values die, it
is not important which one is assigned to register a and which one to register b.

We now apply the rule of Figure 4b. This rule removes registers from a node
constraint if we know that these registers are occupied by other nodes, i.e. the
constraints consisting of these registers are saturated. Reconsidering the example
shown in Figure 4d, the nodes I; and I can only be assigned to register a and
b. Thus, I3 cannot be assigned to one of these registers and we remove them
from the constraint of I3. The transformation removes all nodes from the upper
constraint. Usually, we delete such an empty node after reconnecting all children
to its parent, because an empty node serves no purpose and the removal may
enable further rule applications. However, since {a, b, ¢} is the root of our tree—
holding only unconstrained nodes—we keep it.

Since we want to relax the constraints of dying nodes as much as possible, the
rule shown in Figure 4c moves dying nodes upwards in the constraint hierarchy.
This is only allowed, if the constraint C; does not contain non-dying nodes. For
our example of Figure 4d we relax the constraints of I; and I, further to {a, b, c}.
This would be disallowed without the application of 4b, because a or b could
then be assigned to I3, which would render a coloring of the results impossible.

4.3 Obtaining a coloring order

After exhaustive application of the transformation rules, we obtain an ordering
of the constraints by a post-order traversal of the constraint hierarchy, so more
constrained nodes are colored first. For example, in Figure 4d the node I3 must
be colored first due to this order. Within each constraint of the hierarchy, the
associated values are further ordered with respect to a post-order traversal over
the original constraint hierarchy. The second traversal ensures that “over-relaxed”
values, i.e. values with a constraint that is less restrictive than their original
constraint, are colored first. For our example in Figure 4d this means that we
have to color I; before I, although their relaxed constraints are equal. The final
node order is I3, I, I. For the PBQP, we intersect the original (Figure 3a)
and the relaxed constraints (Figure 3c); resulting in the constraints shown in
Figure 3d. We now have an order to color the values live immediately before the
constrained instruction. Likewise, we obtain an order for the results by coloring
the more constrained values first. Finally, we obtain a coloring order for the
whole PBQP graph by employing the PEO for the remaining (unconstrained)
nodes. This order ensures that our PBQP solver finds a register assignment even
in presence of constrained instructions.

5 Evaluation

In this section we evaluate the impact of our adaptations. First, the late decision
is compared to early decision making. Also, we investigate the effects of RM.

RM disabled RM enabled

Reduction Applications Ratio Applications Ratio

RO 2,047,038 — 2,013,003 —
RE 126,002 — 33,759 —
R1 106,828 13.9% 94,529 11.9%
R2 363,221 47.2% 382,705 48.0%
RN 298,928 38.9% 292,872 36.7%
RM 0.0% 26,850 3.4%

Table 1: Percentages of reduction types.

Finally, our approach is compared to the current LIBFIRM allocator in terms of
speed and result quality.

5.1 Early vs. late decision

As mentioned in Section 3.3 we implemented early decision as well as late
decision. We evaluated both approaches using the C programs of the SPEC
CINT2000 benchmark suite. The programs compiled with late decision do not
reach the performance of the programs compiled with early decision for any
benchmark, showing a slowdown of 3.9% on average. Especially the 253.perlbmk
benchmark performs nearly 20% slower.

We think that the quality gap stems from the different handling of affinities.
An early decision takes account of the surrounding affinity costs and propagates
them during the reduction. For a late decision a node and incident affinity edges
are removed from the PBQP graph first; then the decisions at adjacent nodes
are made without accounting the affinity costs. When the late decision is made,
the affinities may not be fulfilled due to decisions at interference neighbors that
were not aware of these affinities.

5.2 Effects of RM

We added RM to our PBQP solver and Table 1 shows that 3.4% of the PBQP
reductions during a SPEC compilation are RM. The number of nodes, remaining
after the graph is completely reduced, is given in the RO row, but technically
these nodes are not “reduced” by the solver, so they are excluded from the ratio
calculation. RE is also excluded, since it reduces edges instead of nodes. The
heuristic RN makes up 36.7% of the reductions, so these decisions are significant.
The number of independent edge reductions decreases to nearly a fourth in
total, which suggests that a significant number of RE stem from nodes, whose
assignment is determined by a heuristic reduction of a neighbor. In case of RM,
those edges are “redirected” to this neighbor instead. Another effect is that the
number of heuristic decisions decreases by 2%. This reflects nodes that can be

Benchmark Recoloring PBQP Ratio

164.gzip 345 350 101.4%
175.vpr 446 444 99.7%
176.gcc 179 179 99.8%
181.mcf 336 335 99.6%
186.crafty 233 231 99.4%
197.parser 468 467 99.7%
253.perlbmk 355 354 99.8%
254.gap 252 253 100.4%
255.vortex 417 418 100.1%
256.bzip2 374 371 99.4%
300.twolf 684 680 99.4%
Average 99.9%

Table 2: Comparison of execution time in seconds with recoloring and PBQP.

optimally reduced after merging the neighbors into them. Altogether, the costs
of the PBQP solutions decreased by nearly 1% on average, which shows that
RM successfully improved the heuristic decisions.

5.3 Speed evaluation

To evaluate the speed of the compilation process with PBQP-based copy co-
alescing, we compare our approach to the recoloring approach [12]. Both ap-
proaches are implemented within the LIBFIRM compiler backend, so all other
optimizations are identical. The SPEC CINT2000 programs ran on an 1.60GHz
Intel Atom 330 processor on top of an Ubuntu 10.04.1 system. We timed the rele-
vant phases within both register allocators and compare the total time taken for
a compilation of all benchmark programs. The recoloring approach uses 11.6 sec-
onds for coloring and 27.3 seconds for copy coalescing, which is 38.9 seconds in
total. In contrast, the PBQP approach integrates copy coalescing into the col-
oring, so the coloring time equals the total time. Here, the total time amounts
to 31.5 seconds, which means it takes 7.4 seconds less. Effectively, register as-
signment and copy coalescing are 19% faster when using the PBQP approach
instead of recoloring.

5.4 Quality evaluation

To evaluate the quality of our approach, we compare the best execution time
out of five runs of the SPEC CPU2000 benchmark programs with the recoloring
approach. The results in Table 2 show a slight improvement of 0.1% on average.

In addition, we assess the quality of our copy minimization approach by
counting the inserted copies due to unfulfilled register affinities. We instrumented
the Valgrind tool [15] to count these instructions during a SPEC run. Despite

PBQP Recoloring Ratio

Benchmark Instr. Swaps Copies Instr. Swaps Copies Swaps Copies
164.gzip 332 3.14% 0.71% 326 2.01% 0.19% 156.2% 374.7%
175.vpr 202 4.38% 0.29% 201 4.32% 0.25% 101.4% 113.8%
176.gcc 165 4.20% 0.30% 165 3.95% 0.28% 106.4% 108.9%
181.mcf 50 4.22% 0.00% 50 4.72% 0.00% 89.4% 1047207.5%
186.crafty 208 8.14% 0.56% 209 8.36% 0.64% 97.4% 87.7%

197.parser 365 4.13% 0.56% 366 4.48% 0.28% 92.2% 198.5%
253.perlbmk 396 4.64% 0.28% 408 5.97% 0.14% 77.7% 202.1%

254.gap 259 7.02% 0.08% 259 6.86% 0.40% 102.4% 20.1%
255.vortex 379 3.08% 0.53% 377 3.12% 0.16% 98.9% 339.2%
256.bzip2 295 6.30% 0.14% 298 6.15% 0.93% 102.4% 14.9%
300.twolf 306 4.80% 0.90% 306 4.33% 1.30% 110.6% 69.1%
Average 269 4.91% 0.40% 269 4.93% 0.42% 99.6% 95.2%

Table 3: Dynamic copy instructions in a SPEC run (in billions).

dynamic measuring, the results in Table 3 are static, because the input of the
benchmark programs is static. Since the number of instructions varies between
programs, we examine the percentage of copies. We observe that nearly 5% of the
executed instructions are swaps and around 0.4% are copies on average. Because
of the small number of copies a difference seems much higher, which results in
the seemingly dramatic increase of 1047208% swaps for 181.mecf. On average the
percentages decrease by 0.4% and 4.8%, respectively.

6 Future Work

Some architectures feature irregularities which are not considered in the context
of SSA-based register allocation. The PBQP has been successfully used to model
a wide range of these irregularities by appropriate cost matrices [16]. While the
modelling can be adopted for SSA-based register assignment, guaranteeing a
polynomial time solution is still an open problem.

7 Conclusion

This work combines SSA-based with PBQP-based register allocation and in-
tegrates copy coalescing into the assignment process. We introduced a novel
PBQP reduction, which improves the quality of the heuristic decisions by merg-
ing nodes. Additionally, we presented a technique to handle hierarchic register
constraints, which enables a wider range of options within the PBQP. Our im-
plementation achieves an improvement over the SSA-based recoloring approach.
On average, the relative number of swap and copy instructions for the SPEC

CINT2000 benchmark was reduced to 99.6% and 95.2%, respectively, while tak-
ing 19% less time for assignment and coalescing.

References

1.

10.

11.

12.

13.

14.

15.

16.

Bouchez, F., Darte, A., Rastello, F.: On the complexity of register coalescing. In:
CGO ’07: Proceedings of the International Symposium on Code Generation and
Optimization. pp. 102-114 (2007)

. Braun, M., Mallon, C., Hack, S.: Preference-guided register assignment. In: Com-

piler Construction, Lecture Notes in Computer Science, vol. 6011, chap. 12, pp.
205-223. Springer Berlin / Heidelberg (2010)

Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16(3), 428-455 (May 1994)

Brisk, P., Dabiri, F., Macbeth, J., Sarrafzadeh, M.: Polynomial time graph coloring
register allocation. In: 14th International Workshop on Logic and Synthesis. ACM
Press (2005)

Buchwald, S., Zwinkau, A.: Instruction selection by graph transformation. In: Pro-
ceedings of the 2010 international conference on Compilers, architectures and syn-
thesis for embedded systems. pp. 31-40. CASES ’10, ACM, New York, NY, USA
2010

(Chaitzn, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6(1), 47-57
1981

](Dirac,) G.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Semi-
nar der Universitdt Hamburg 25, 71-76 (1961)

Ebner, D., Brandner, F., Scholz, B., Krall, A., Wiedermann, P., Kadlec, A.: Gen-

eralized instruction selection using SSA-graphs. In: LCTES ’08: Proceedings of the
2008 ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for

embedded systems. pp. 31-40. ACM, New York, NY, USA (2008)

Eckstein, E., Konig, O., Scholz, B.: Code instruction selection based on SSA-graphs.

In: Software and Compilers for Embedded Systems, Lecture Notes in Computer
Science, vol. 2826, pp. 49-65. Springer Berlin / Heidelberg (2003)

Grund, D., Hack, S.: A fast cutting-plane algorithm for optimal coalescing. In:
Compiler Construction, chap. 8, pp. 111-125. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2007)

Hack, S.: Register allocation for programs in SSA form. Ph.D. thesis, Universitét
Karlsruhe (October 2007)

Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI ’'08: Proceedings

of the 2008 ACM SIGPLAN conference on Programming language design and
implementation (2008)

Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:

Compiler Construction, Lecture Notes in Computer Science, vol. 3923, pp. 247-262.

Springer Berlin / Heidelberg (2006)

Hames, L., Scholz, B.: Nearly optimal register allocation with PBQP. In: Modular

Programming Languages, Lecture Notes in Computer Science, vol. 4228, chap. 21,

pp. 346-361. Springer Berlin / Heidelberg (2006)

Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary

instrumentation. SIGPLAN Not. 42(6), 89-100 (June 2007)

Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In: LCTES-

SCOPES. pp. 139-148 (2002)

	SSA-based Register Allocation with PBQP
	Introduction
	Related Work
	Register allocation on SSA form
	PBQP-based register allocation

	PBQP
	PBQP in general
	PBQP construction
	Solving PBQP instances
	Adapting the PBQP solver for SSA-based Register Allocation
	Early application of optimal reductions
	Merging PBQP nodes

	Register Constraints
	Restricting operands
	Relaxing constraints
	Obtaining a coloring order

	Evaluation
	Early vs. late decision
	Effects of RM
	Speed evaluation
	Quality evaluation

	Future Work
	Conclusion

