
Instruction Selection by Graph Transformation

Sebastian Buchwald
Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany
buchwald@kit.edu

Andreas Zwinkau
Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany
zwinkau@kit.edu

ABSTRACT
Common generated instruction selections are based on tree
pattern matching, but modern and custom architectures fea-
ture instructions, which cannot be covered by trees. To
overcome this limitation, we are the first to employ graph
transformation, the natural generalization of tree rewriting.
Currently, the only approach allowing us to pair graph-
based instruction selection with linear time complexity is
the mapping to the Partitioned Boolean Quadratic Problem
(PBQP). We present formal foundations to verify this ap-
proach and therewith identify two problems of the common
method and resolve them. We confirm the capabilities of
PBQP-based instruction selection by a comparison with a
finely-tuned hand-written instruction selection.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Correctness proofs; D.3.4 [Programming Lan-
guages]: Processors—Compilers,Retargetable Compilers

General Terms
Algorithms, Theory, Verification

1. INTRODUCTION
Adapting a compiler to new hardware architectures is a

common task, especially in embedded systems. Generating
a compiler from an architecture description is an appealing
improvement to manual programming. Yet popular compil-
ers do not employ this technique as it results in poorer code
quality. New approaches like those based on solving the Par-
titioned Boolean Quadratic Problem (PBQP) suggest that
this trade-off may not be necessary [7, 8, 19].

The most architecture-specific part of code generation is
instruction selection, where the intermediate representation
(IR) gets transformed to architecture-specific instructions.
For every machine instruction there is a corresponding IR

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

pattern with equal semantics. A cost model weighs the pat-
terns against each other, considering e.g. code size, execu-
tion time or energy use. In the IR the patterns have to be
identified and a subset with minimal cost has to be selected
that covers the whole program.

Modern compilers use an IR in static single assignment
(SSA) form [6, 27] allowing a graph-based representation
called program graph or “sea of nodes” [4]. Thus, instruction
selection can be considered as graph transformation.

Contrary to classical algorithms for generated instruction
selection, PBQP can model program and pattern graphs.
With this increased flexibility instruction selection can sup-
port more complex operations (vector operations, custom
instructions, etc.), which cannot be processed by tree rewrit-
ing, to achieve higher code quality. A PBQP-based instruc-
tion selection can therefore combine the code quality of man-
ually fine-tuned compilers with the short compiler develop-
ment times desired in embedded systems.

Least-cost instruction selection on directed acyclic pro-
gram graphs is NP-complete [26]. Therefore, a graph-based
linear-time instruction selector must sometimes make heuris-
tic decisions to be efficient. The PBQP is a modelling of the
instruction selection problem that reduces the problem to
its core before heuristic decisions are made.

However, finding any PBQP solution is NP-complete [19]
in general. This seems to contradict the empirical observa-
tion that a linear algorithm always finds a solution. So the
question arises, whether PBQP instances, which are con-
structed during instruction selection, form a special subclass
of the PBQP that can be solved in linear time. Previous
work ignored this question, but not finding a solution is no
alternative, because a fallback instruction selection would
be required, which invalidates the argument of reduced de-
velopment time. Our contributions are as follows:

• We provide a new formal representation for instruction
selection based on graph transformation.

• We show that the PBQP-based approach can indeed
fail and provide a rectification for the PBQP solving
algorithm. Additionally, we identify sufficient precon-
ditions for the rule sets of architecture descriptions to
guarantee that a solution is found.

• We derive a method for automatic completion of in-
sufficient rule sets, which simplifies the specification of
architecture descriptions.

• An evaluation of PBQP-based instruction selection on
the IA32 architecture confirms the competitive perfor-
mance of this approach.

The paper is organized as follows: In Section 2, we describe
our formal model of graph-based instruction selection. Sec-
tion 3 explains the PBQP and how it is used for instruc-
tion selection. Section 4 depicts two problems of the known
approach and shows how to solve them. Our prototype is
evaluated in Section 5. We summarize related and future
work in Section 6 and Section 7, respectively. Finally, we
conclude in Section 8.

2. GRAPH-BASED INSTRUCTION SELEC-
TION

Instruction selection can be divided into three phases:

Pattern matching: Find all occurrences of the given pat-
tern set in the current program graph.

Selection: Select an appropriate subset of the matches that
covers the whole program graph.

Replace: Replace the selected patterns with their corre-
sponding instruction.

PBQP solving can only account for the selection phase,
which means the pattern matching and replace phases are
not considered so far. Since PBQP-based selection can even
handle DAG-shaped patterns, we replace the usual tree re-
writing system [14, 23, 24] with a more general graph rewrit-
ing system [11, 18, 28]. More precisely, we use the algebraic
single-pushout approach [22], which is based on category
theory [12].

2.1 Formal graph-foundations
A category consists of objects and morphisms. We embed

program graphs and pattern graphs into a joint category
with IR graphs as objects.

Definition 1 (IR graph). Let Σ be a finite set of node
types. An IR graph G is a 6-tuple (VG, EG, src, tgt, pos, type),
where

• VG is a finite set of nodes

• EG is a finite set of edges

• src : EG → VG assigns each edge its source node

• tgt : EG → VG assigns each edge its target node

• pos : EG → N0 assigns each edge its position

• type : VG → Σ is a partial typing of nodes

For an untyped node v we denote type(v) = ⊥. Every type
t ∈ Σ has a static out-degree deg(t) ∈ N0. Likewise, we as-
sign each node v an out-degree deg(v) = |{e ∈ EG | src(e) =
v}|, which equals the out-degree of the assigned type:

type(v) 6= ⊥ ⇒ deg(v) = deg(type(v)).

Furthermore, we impose two additional conditions for the
position of an edge e ∈ EG:

0 ≤ pos(e) < deg(src(e))

∀e′ ∈ EG : src(e) = src(e′) ∧ pos(e) = pos(e′)⇒ e = e′.

Definition 2 (Morphisms on IR graphs). A morph-
ism f : G→ G′ is a pair (fV , fE) of mappings fV : VG → VG′

and fE : EG → EG′ , where

fV (src(e)) = src(fE(e))

fV (tgt(e)) = tgt(fE(e))

pos(e) = pos(fE(e))

type(v) 6= ⊥ ⇒ type(v) = type(fV (v)).

Definition 3 (Isomorphic IR graphs). IR graphs G
and G′ are called isomorphic G ∼= G′, if there are two mor-
phism f : G→ G′ and g : G′ → G with

f ◦ g = idG′

g ◦ f = idG.

Definition 4 (Program graph). A program graph G
is an acyclic IR graph with type(v) 6= ⊥ for each node v ∈
VG.

Usual program representations are cyclic due to control
flow cycles and only acyclic within a basic block. If the IR
is in SSA form, the restriction to acyclic graphs in Defini-
tion 4 still allows instruction selection for whole functions,
because each loop contains at least one φ-node, which we
assume is not modified by instruction selection. Thus, for
formal1 considerations we split a φ-node into two nodes.
One node has no incoming edges and the k outgoing edges
of the original node, so let us call it φk. The other node has
all the incoming edges of the original node and no outgoing
edges, effectively it is a φ0-node. To keep the number of the
resulting φk-types finite we employ the limitations provided
by the language specifications.

Definition 5 (Pattern graph). A pattern graph P
is a rooted, acyclic IR graph with root rt(P), where

type(rt(P)) 6= ⊥

type(v) = ⊥ ⇒ deg(v) = 0

for all nodes v ∈ VP .

In contrast to program graphs, the leaf nodes of pattern
graphs can be untyped. According to Definition 2, untyped
nodes can be mapped to nodes of arbitrary type. Intuitively,
an untyped node represents a value stored in a register. The
mapping of a pattern into the program graph is called a
match. To find such matches is called pattern matching and
describes the first phase of instruction selection.

Definition 6 (Match). A match (P, ι) of an IR graph
G consists of a pattern graph P and an injective morphism
ι : P ↪→ G.

The simplest kind of a pattern graph consists of a typed root
with only untyped operands, if any.

type

⊥⊥

Definition 7 (Atomic pattern graph). A pattern
graph P is called atomic, if type(v) = ⊥ holds for all nodes
v ∈ VP \ {rt(P)}.
1In praxis, the split has the same effect as allowing exactly
one alternative at a φ-node: an atomic φ-pattern.

Store Load

Add

Const

Figure 1: Load and Store with a common address cal-
culation.

2.2 Covering a program graph
For non-atomic and more complex pattern graphs we want

to allow multiple pattern graphs to overlap in the program
graph. Figure 1 shows an address calculation, which is used
by multiple operations. For the Store and Load nodes pat-
tern graphs exist, which overlap on the marked subgraph.
Using these patterns avoids to materialize the address in a
register and thus can be advantageous regarding code size
and register pressure. However, some nodes (volatile Loads
for example) must never be in the intersection of overlap-
ping patterns. Thus, the pattern matcher has to reject such
matches, if the critical node has multiple predecessors2.

Definition 8 (Spanning graph). Let G be an
IR graph and v ∈ VG a node. Furthermore, let

S(v) = {v′ ∈ VG | there is a path from v to v′}

be the set of nodes reachable from v. The spanning graph
span(v) is the induced subgraph of S(v).

Using the concept of spanning graphs, we can relate nodes
of different pattern graphs, to formally grasp overlaps of pat-
terns. Root nodes are explicitly excluded from this relation,
apart from the fact that every node is equivalent to itself.
The example in Figure 1 marks the spanning graph of the
Add node.

Definition 9 (Equivalence of pattern nodes).
Let (Pi)i∈I be a family of pattern graphs with vi ∈ VPi and
vj ∈ VPj . We define an equivalence relation on

⋃
i∈I VPi by

vi ∼ vj ⇔ vi = vj ∨ (span(vi) ∼= span(vj)∧
rt(Pi) 6= vi ∧ rt(Pj) 6= vj).

(1)

We describe the relation between multiple patterns and a
program graph using morphisms. We define the term cover,
which relates the two graph types, first for nodes and then
for acyclic IR graphs. Remember that the overlap of pat-
terns can lead to a situation where a node is covered by
multiple patterns simultaneously.

Definition 10 (Cover of a node). Let im(ι) denote
the image of ι and ι−1 the inverse morphism of ι. The cover
Cv of a node v ∈ VG in an acyclic IR graph G by a set of
pattern graphs P is a non-empty set of matches (Pi, ιi) of G

2In graph transformation theory this can be expressed using
negative application conditions (NACs) [16].

with Pi ∈ P. For every match there must be a preimage of
v with the same type:

∀i : v ∈ im(ιi) ∧ type(ι−1
i (v)) = type(v), (2)

where ⊥ = ⊥ is true. Additionally, for all matches (Pi, ιi)
and (Pj , ιj) in Cv the preimages of v must be equivalent:

ι−1
i (v) ∼ ι−1

j (v). (3)

Figure 2 illustrates a cover where a program graph and
two pattern graphs PA and PB are shown. According to
the definition above, {(PA, ιA), (PB , ιB)} is a cover for the
Shl and the Const node. These nodes have two preimages,
since they are covered by two patterns simultanuously. The
Const and the Shl nodes of the patterns are equivalent, re-
spectively, because their spanning graphs in the patterns are
isomorphic. In contrast, the Add node in PA is a root node,
therefore by Definition 9 it is not equivalent to the Add node
in PB , which is no root, hence the set of matches violates
Equation 3.

Definition 11 (Cover of an IR graph). A set CG

of matches (Pi, ιi) is called cover of an acyclic IR graph G,
if for each node v ∈ VG the set

Cv = {(P, ι) ∈ CG | v ∈ im(ι) ∧ type(ι−1(v)) = type(v)}

is a cover of v. Additionally, every node v ∈ VG must satisfy
the condition

(type(v) 6= ⊥ ∧ ∃i : v ∈ im(ιi) ∧ type(ι−1
i (v)) = ⊥)

⇒ ∃j : ιj(rt(Pj)) = v.
(4)

The condition in Equation 4 means that every typed node
v, which is covered by a leaf node without type, must also
be covered by the root node of another pattern. Together
with the previous definitions, it also implies that if a root
node w covers a node v, every other pattern node u, which
also covers v, must be untyped.

For an example consider Figure 2 again, where the pattern
graphs PA and PB cannot both be contained in a cover. Defi-
nition 11 requires for v = Add that Cv = {(PA, ιA), (PB , ιB)}
is a cover of the Add node, which violates Equation 3 as we
already know.

2.3 Rewrite rules
For a complete instruction selection we also need the re-

place phase. A rewrite rule is a transformation of one pat-
tern graph into another one. The specification of an instruc-
tion selection, which is the major part of an architecture de-
scription, is a set of rewrite rules transforming nodes with
IR types into nodes with types corresponding to operations
of the target architecture.

Instruction selection can now be defined solely on the level
of graph transformations. Given is a set of rewrite rules, a
program graph G and a cost model. The pattern set is ex-
tracted from the rule set and a set of all matchesM is found
in the program graph. The instruction selection problem is
to select a cover CG ⊆M of G with minimal cost. To select
this cover, we map the problem to the PBQP, as shown in
the next section.

3. SELECTION WITH PBQP
PBQP-based instruction selection gets its name by map-

ping the instruction selection problem to the Partitioned

pattern graph PA program graph pattern graph PB

Add

⊥ Shl

⊥ Const

Load

Add

⊥ Shl

⊥ Const

Load

Add

Shl

Const

Figure 2: Cover of nodes by patterns.

u

v

3
1
8

u

(
2
4

)
v

4 ∞
3 6
1 2

(u,v)

Figure 3: Basic PBQP example.

Boolean Quadratic Problem. In the following, we give an
overview of the PBQP itself and the algorithm for solving
PBQP instances as known from previous work [8, 9, 19, 29].
Then we show how to construct PBQP instances within the
scope of graph-based instruction selection.

3.1 Partitioned Boolean Quadratic Problem
The PBQP is an abstract optimization problem, where

one has to make multiple, interdependent choices with min-
imal cost.

Formally, let G = (V,E) be a directed graph with a to-
tally ordered set of nodes V and a set of edges E ⊆ {(u, v) |
u, v ∈ V ∧ u < v}. For every node u ∈ V there is a set
of alternatives Au = {A1, . . . , Al}, whose costs are specified
by the vector ~cu ∈ Rl. For every edge (u, v) a cost matrix

C(u,v) ∈ (R ∪ {∞})k×l is assigned3, where k and l are the
number of alternatives of u and v, respectively. If an alter-
native Ai at an edge (u, v) of source node u is selected, then
the i-th row of the corresponding cost matrix C(u,v) must
be selected, too. Likewise, the selection at the target node
v determines the column of the cost matrix. Figure 3 shows
two nodes, where an alternative (with costs 1 and 2, respec-

3More precisely, a Min-Plus-Algebra [5] has to be used, be-
cause of the inclusion of ∞. A more detailed definition [2]
is not necessary here, but there are subtle algebraic impli-
cations.

tively) in their corresponding cost vectors is selected. With
this selection the row and column of the cost matrix is de-
termined to have the value 3 for a total sum of 1 + 2 + 3 = 6
for this part.

A selection in a PBQP instance is a mapping v 7→ Ai ∈ Av

that assigns each node an eligible alternative. The cost of a
selection is the sum of all chosen vector and matrix entries.
A selection is called a solution if its cost is finite. For exam-
ple, every selection in Figure 3 containing {u 7→ A1, v 7→ A2}
is not a solution, because an entry with cost ∞ is selected
in the matrix. This means that infinite cost entries can be
used to express incompatibility between alternatives. The
goal of the PBQP is to find a solution with minimal cost.

3.2 Solving PBQP instances
The algorithm for solving PBQP can be divided into three

steps:

1. Reduce the graph until no edges are left.

2. Locally select a (globally) minimal alternative at every
node.

3. Reinsert reduced nodes in reverse order and select a
(locally) minimal alternative at every accessory node.

The easiest way of reducing the graph is to delete an edge
with a zero cost matrix. In order to obtain such a matrix we
shift costs from the matrix into the adjacent vectors. A cost
amount of x can be accounted in the entry Ai of a cost vec-
tor or in the entries in the i-th row/column of an adjacent
cost matrix. In both cases the total cost of a correspond-
ing selection is the same. Figure 4 depicts an example for
x = 2, where the costs are shifted between the first row of
the cost matrix and the first entry of the cost vector. As a
result of shifting costs into the vector, the cost matrix is in
normal form, i.e. the minimum cost entry of each row and
column equals zero. If normalisation would produce infinite
vector costs, the corresponding alternative (including cost
matrix rows/columns) is deleted. The deletion of a matrix
row/column may induce further changes in the adjacent vec-
tor, hence the normalisation may propagate throughout the
whole graph and delete alternatives. Altogether, we obtain
the following reduction:

u

(
0
3

) (
2 2
0 1

)

(a) Original cost matrix.

u

(
2
3

) (
0 0
0 1

)

(b) Normalized cost ma-
trix.

Figure 4: Shifting costs between vector and matrix.

RE: Independent edges have a cost matrix that can be
normalized into a zero matrix and can be removed after
the normalization is processed.

The basic idea of the following two reductions is the trans-
formation to a smaller PBQP instance with equal minimal
costs, such that each solution of the small instance can be
extended to a solution of the original instance with equal
costs.

R1: Nodes of degree one can be removed, after costs are
accounted in the adjacent node.

R2: Nodes of degree two can be removed, after costs are
accounted in the cost matrix of the edge between the
two neighbors; If necessary, the edge is created first.

For sparse graphs these reductions are very powerful, since
they diminish the problem to its core. If the entire graph
can be reduced by RE, R1, and R2 [29], then the resulting
PBQP solution is optimal. If nodes of degree three or higher
remain, a heuristic ensures linear time behavior:

RN: Nodes of degree three or higher. For a node u of
maximum degree we select a locally minimal alterna-
tive, which means we only consider u and its neighbors.
After the alternative is selected, all other alternatives
are deleted and the incident edges are independent, so
they can be removed by using RE.

Since the heuristic reduction does not take edges between
neighbors into account, we want to have as much informa-
tion as possible in the cost vectors. This can be achieved
by normalizing each matrix before a heuristic reduction is
applied.

3.3 Construction of the PBQP graph
In this section, we describe the construction of a PBQP

instance from a program graph G and a set of pattern graphs
P. First a PBQP graph (V,E) is built from the program
graph G, where

V = VG

E = {(src(e), tgt(e)) | e ∈ EG}.

Since our program graphs are considered acyclic, there is
a total order in V , where src(e) < tgt(e) for all edges e ∈ EG

and (V,E) satisfies the conditions for a PBQP graph. While
a program graph can have multiple edges with the same
source and target node, these edges are merged to reduce
the node degree. Nodes are mapped 1:1.

Furthermore, we need to construct a vector of alternatives
for every node v, where equivalent matches are combined
to one alternative. Two matches are equivalent ∼v with
respect to v if and only if the corresponding preimages of v

are equivalent according to Equation 3. Let Cv denote the
set of all matches (P, ι), such that each {(P, ι)} is a cover of
v, then the alternatives of v are defined by

Av = Cv/ ∼v .

Every pattern has finite costs, given by an external cost
model or a specification. These costs are put into the root
node of the pattern, because it is not equivalent to any other
node by Definition 9. All other nodes of the pattern have
costs 0.

For the declaration of the cost matrices we consider one el-
ement (Pu, ιu) of an alternative Au of the source node u and
one element (Pv, ιv) of the alternative Av of the target node
v independently of other combinations. The corresponding
matrix entry is constructed as follows:

c(Au, Av) =

∞ type(ι−1

u (v)) = ⊥ ∧ ι−1
v (v) 6= rt(Pv)

∞ type(ι−1
u (v)) 6= ⊥ ∧ ι−1

u (v) � ι−1
v (v)

0 otherwise

(5)

The first case deals with pattern borders. If an untyped
node of a selected pattern is matched at v, then a root alter-
native must be selected there, because the pattern expects a
register value as input at this point. The second case ensures
consistency within a pattern, so all or no nodes of a pattern
are replaced. If a typed node of a selected pattern is matched
at v, then the corresponding node of an alternative pattern
must be equivalent. Figure 5 gives a graphical example. The
upper part shows three patterns Add, Add+Const and Const
with their costs annotated respectively, which shall cover the
program graph. The program graph in the lower left holds
an empty node, which we will ignore in this example. Each
pattern is matched once. Alternatives for Add and Const are
generated in the u and v node, respectively. The Add+Const
pattern spans two nodes, hence u and v have a correspond-
ing alternative. The cover is displayed as a hatching instead
of arrows like in Figure 2 for the sake of clarity. The costs of
individual patterns are given externally and put into the cost
vectors in the PBQP graph on the right. The cost model
roughly shows the instruction size on IA32, so the PBQP
solver will optimize for code size in this case.

Let us consider the cost matrix. The∞ entry in the right
column originates from the first case of Equation 5, because
the Add pattern requires a root alternative at v, which is
only given by the Const alternative. The ∞ entry in the
left column comes from the second case of Equation 5, be-
cause the Const root alternative at v is incompatible with the
Add+Const alternative in u. Thus, we ensure that a PBQP
solution selects the Add+Const pattern in both nodes or not
at all.

PBQP instances, constructed by this method, form a sub-
class of PBQP instances, which we call “graph of an instruc-
tion selection PBQP” (GISP).

4. ENSURING A PBQP SOLUTION
With the knowledge about PBQP-based instruction selec-

tion, we now treat the question whether a solution can be
guaranteed. First we will show two problems of the clas-
sical method and how to solve them. Then verification is
considered.

Add

Const

u

v
Const

Add+Const

(
5
0

)

Add
Add+Const

(
2
6

)
(

0 ∞
∞ 0

)

Add

⊥ ⊥

Add (2)

Add

Const ⊥

Add+Const (6)

Const

Const (5)

Figure 5: Mapping instruction selection to PBQP.

Load

Add

SymConstShl

Index Scale

Figure 6: Example of conflicting decisions within a
single pattern.

4.1 Conflicting decisions
First a quick note on the difference between the above

formalisation and an implementation. In the formal reduc-
tion process alternatives are deleted, so vectors and matri-
ces can “shrink”, but for simplicity and efficiency reasons an
implementation can mark a deleted alternative instead by
assigning infinite costs. This is undesirable within the for-
malization, because the matrix normalisation would be un-
necessarily complex. The first implementation of a PBQP
solver [8, 9, 29] does not consider infinite vector costs and the
resulting propagation effect of the normalisation. Thus, the
PBQP solver may select alternatives which should have been
deleted already. More precisely, one may think of a situation
where a previous heuristic reduction has invalidated the en-
try with the lowest local cost, such that after selecting the
entry the resulting PBQP instance has no solution. Without
the propagation effect the local information, on which the
heuristic reduction bases its decisions, is misleading.

Figure 6 shows such a scenario where the PBQP solving
algorithm (a sufficient cost model postulated) selects the
wrong alternative. First note that only a subgraph is shown
and many more edges connected to the displayed nodes are
possible. Thus, the PBQP solver may apply the heuristic
RN at any time at any node. In the first step in our example
the heuristic reduction chooses to exchange the dotted Load
node for an ia32Mov node, whose pattern also includes all
the other displayed nodes, especially the Scale node. Hence,

the alternative containing the ia32Mov pattern must be se-
lected at every other node, too. This fact is reflected at the
Add node, where the other alternatives have infinite costs,
but these costs are not propagated further, i.e. the costs
are not propagated over the dotted boundary. Now a sec-
ond heuristical decision at the dashed Scale node chooses
an alternative not containing the ia32Mov pattern. This is
inconsistent with the first heuristic decision, but the adja-
cent Shl does not indicate this invalidity and the heuristic
only considers graph elements within the dashed boundary.
With this unfortunate decision the PBQP instance does not
have a solution anymore. Our instruction selector used the
Eckstein-Scholz-PBQP solver4 at first, but it could not com-
pile certain programs due to the described problem.

Infinite costs must be assigned to the invalid entries in
the Shl and Scale cost vectors to prevent the heuristic to
select an incompatible entry in the second step. After the
first heuristic reduction, the Add cost vector holds infinite
cost entries, which must be propagated into the neighboring
matrices and recursively into adjacent vectors. This infinity
propagation in the implementation ensures the normaliza-
tion of all edges affected by the previous reduction.

Before starting the PBQP solving algorithm and at the
end of R2 and RN the InfinityPropagation procedure,
shown in Algorithm 1, must be called for every neighbor
of the reduced node. This extended algorithm solves the
example problem above by guaranteeing that the following
condition holds: If one alternative of a pattern match has
infinite cost, so do all alternatives of this match. This is
an extension to the classic solving algorithm, since Infini-
tyPropagation propagates costs across the whole PBQP
graph, instead of just into adjacent vectors. Additionally, in-
dependent edges may be removed during the infinity propa-
gation, which could avoid some otherwise necessary heuristic
decisions.

The time complexity of the PBQP solving algorithm is
O(nm3) [29], where n is the size of the program graph and
m the maximal size of the cost vectors. For a GISP m is
the maximal number of equivalence classes maxv∈V |Av| of a
node v. This upper bound of O(nm3) also holds for our in-
finity propagation extension, because every propagation step

4http://www.complang.tuwien.ac.at/scholz/pbqp.html

http://www.complang.tuwien.ac.at/scholz/pbqp.html

Algorithm 1 Infinity propagation procedure to embed into
the PBQP solving algorithm [29].

1: procedure InfinityPropagation(x)
2: for all y ∈ adj(x) do
3: for i← 1 to |~cx| do
4: m← min(Cxy(i, :))
5: cx(i)← cx(i) +m
6: if m <∞ then
7: ~a← Cxy(i, :)− ~m
8: Cxy(i, :)← ~a

9: S ← {i | 1 ≤ i ≤ |~cx| ∧ cx(i) =∞}
10: for all y ∈ adj(x) do
11: for all i ∈ S do
12: Cxy(i, :)← ~∞
13: normalize edge (x, y)
14: if (x, y) is independent then
15: remove edge (x, y)

16: if Cxy changed then
17: InfinityPropagation(y)

deletes at least one alternative, so nothing is done twice and
the costs are amortized. Therefore, critical for the execu-
tion time is the number of alternatives, which is small and
negligible in practice.

4.2 Overlapping patterns
The IR has a known, finite set of node types. Since the ar-

ity of each type specifies the number of successors, all possi-
ble atomic patterns can be enumerated. A pattern set which
includes all atomic patterns is called atomically complete.

Atomic patterns can trivially cover any program graph,
therefore at least one solution for the corresponding GISP
exists. The number of possible solutions can only be reduced
by reductions. Let us assess the effect of reductions on the
solvability of GISPs.

Const Const

Figure 7: Critical GISP to motivate composability.

R1 and R2 sustain the solvableness and thus are uncriti-
cal for this problem. For RN on the other hand, additional
constraints for the set of pattern graphs must hold, because
being atomically complete is not sufficient for correct in-
struction selection. Figure 7 shows a problematic scenario
on the left. The two symmetric patterns do not cover the
program graph, because their roots do not belong to the
same alternative. Therefore, selecting an alternative that
induces their simultaneous selection, makes a solution im-
possible. Yet, RN could select such an alternative at the
Const node without noticing the conflict, since only neigh-
boring nodes are considered. After this selection, an atomic
cover is not possible anymore, since the predecessors of the
Const would not be compatible. The graph on the right dis-

plays a legal cover with two patterns. The smaller pattern
is also part of the critical alternative at the Const node from
above and makes it a legal selection. If this pattern would
not exist, the two roots would have to be selected, which
is impossible. If a pattern set also includes patterns for ev-
ery part of every non-atomic pattern, this problem cannot
occur. We call such a pattern set composable.

Definition 12 (Composable pattern set).
A pattern set P is called composable, if for every pattern
graph P ∈ P and every node v ∈ VP with type(v) 6= ⊥ there
is a cover C of P with

∃(P ′, ι′) ∈ C : ι′(rt(P ′)) = v ∧ P ′ ∼= span(v). (6)

Furthermore, for the root rt(P) of every pattern P ∈ P and
for every successor node w ∈ succ(rt(P)) a cover {(Pw, ιw)}
of rt(P) with Pw ∈ P must exist, where the following holds:

∀u ∈ succ(rt(P)) \ {w} : span(u) ∼= span(ι−1
w (u)) (7)

and

type(ι−1
w (w)) = ⊥. (8)

Definition 12 can be separated into two parts. On the
one hand Equation 6 requires that every spanning graph
within a pattern has a pattern itself. Figure 8 shows the non-
tree pattern P0 that resembles the ia32Inc instruction. The
spanning graph of the Add node in the P0 pattern requires
P1 and recursively P3. The second part are the required
Equation 7 and Equation 8, which state that any successor
of the root node can be cut, in the sense that the subgraph
is substituted by a ⊥ node. In Figure 8, the spanning graph
of the Add node in the P0 pattern is substituted for ⊥ in P2.
For all other nodes the pattern is equivalent, especially the
inverse morphism ι−1 is defined for these nodes. Likewise,
P4 can be constructed by substituting the Load node in P1.
In this example, composability requires the existence of the
atomic Store, Add and Load patterns. Untyped nodes are
exempt. There is no atomic ⊥ pattern.

4.3 Verification
We summarize the solutions to the two stated problems:

1. The PBQP solving algorithm must be extended with
infinity propagation to identify conflicting entries as
such.

2. The pattern set must be atomically complete and com-
posable.

Employing these preconditions, we prove [2] that the instruc-
tion selection will always succeed.

While this theoretical proof is assuring, let us consider
the practical applicability. In contrast to a manually pro-
grammed instruction selection, a code generator generator
can additionally check the correctness of the specification,
where “correctness” means that code generation will always
succeed. The semantic equivalence of IR and generated code
must be addressed at the specification and is assumed for our
purposes. In other words the task is to find a cover for all
possible program graphs and this means to statically check
the two properties identified above:

Atomic Completeness: All possible atomic patterns can
be enumerated and searched for in the rewrite rules. If
an atomic pattern is not found, a detailed error mes-
sage can be given indicating the missing pattern.

Store

Add

⊥Load

⊥

P0

Add

⊥Load

⊥

P1

Store

⊥⊥

P2

Load

⊥

P3

Add

⊥⊥

P4

Figure 8: Implicated patterns for a composable pattern set.

Add

ConstAdd

⊥⊥

(a) Pattern graph.

Add

⊥Add

⊥⊥

(b) Missing pattern.

Figure 9: Pattern graph and missing pattern graph
for a composable rule set.

Composability: (see also Definition 12) Given a complex
pattern, we can deduce all subpatterns. For a complex
rooted pattern any direct successor of the root node
can be cut and substituted for a ⊥ node. The result-
ing pattern must be in the pattern set. Likewise, any
spanning graph of a root successor must exist in the
pattern set. We know the exact patterns in this case;
if they lack, a detailed error message can be given.

4.4 Automatic rule generation
Not only can missing patterns be identified, but they can

even be generated automatically, if the pattern set is atom-
ically complete. The existing rule set can be used to find a
cover of the missing pattern and compose a new rule from
the rules used in the cover. The method is the same as per-
forming instruction selection on program graphs. To ensure
an optimal solution a brute-force algorithm could be used in
this case, since pattern graphs are relatively small.

For example, the ia32Lea pattern graph of Figure 9(a)
requires the pattern graph of Figure 9(b), otherwise the re-
sulting rule set is not composable. For the missing pattern
graph the generator computes the optimal cover consisting
of two atomic Add pattern graphs. Then a new rule for
the missing pattern graph is added to the rule set. Apply-
ing this rule is equivalent to applying the atomic Add rules
twice. Therefore, the rule also costs twice as much.

We can conclude that specifying an atomically complete
pattern set is sufficient to guarantee a composable generated

Bench. GCC libFirm PBQP libFirm/PBQP

gzip 187 182 186 97.7%
vpr 276 296 292 101.3%
gcc 123 130 135 96.5%
mcf 327 329 327 100.5%
crafty 135 124 134 92.5%
parser 257 261 264 98.8%
perlbmk 250 196 220 89.1%
gap 128 139 142 97.9%
vortex 200 206 214 96.3%
bzip2 236 242 244 99.2%
twolf 459 512 479 107.0%

Average 97.9%

Table 1: SPEC CINT2000 Comparison: PBQP-
based vs. manual code generator. Benchmark exe-
cution times in seconds.

pattern set. This in turn guarantees a successful PBQP-
based instruction selection.

5. EVALUATION
We implemented our modified PBQP-based instruction

selection within the libFirm compiler5. To evaluate the
quality of the resulting code generated from our compiler,
we used the SPEC CINT2000 benchmark suite.

Table 1 shows the execution times. We used the libFirm
compiler with the conventional manually programmed in-
struction selection and with the PBQP-based one. To show
that libFirm is competitive, we also included measurements
of GCC 4.2.1. All test programs used the same optimization
parameters and were tested on a Pentium 4 with 2.4Ghz and
1GB RAM.

The PBQP-based instruction selection produces code of
slightly inferior quality, which can be seen at the numerous
ratios of less than 100%. Possible reasons are

1. an insufficient use of the target architectures possibil-
ities,

5http://www.libfirm.org/

http://www.libfirm.org/

Bench. R1 + R2 RN sub RN
R1+R2+RN

sub
R1+R2+RN

gzip 7,131 0 0 0% 0%
vpr 22,940 42 0 0.137% 0%
gcc 277,967 52 2 0.012% 0.00048%
mcf 2,015 1 0 0.033% 0%
crafty 31,082 12 0 0.031% 0%
parser 28,637 0 0 0% 0%
perlbmk 114,786 3 0 0.002% 0%
gap 99,960 47 0 0.034% 0%
vortex 130,298 9 0 0.005% 0%
bzip2 7,189 2 0 0.019% 0%
twolf 40,140 32 0 0.065% 0%

762,145 200 2 0.018% 0.00018%

Table 2: Reduction counts of CINT2000 programs.

2. an unrealistic cost model,

3. a weak pattern language compared to manual pro-
gramming or

4. heuristical PBQP decisions, which produce a subopti-
mal result.

During the development of the rule set, we observed that
additional rules, which exploited additional possibilities of
the target architecture, improved the code quality tremen-
dously, while modifications of the cost model did not result
in significant speed improvements. Regarding the pattern
language, we used the generic graph transformation tool Gr-
Gen [15] in our prototype, which offers all desired features.
Heuristic PBQP decisions after all demand more attention.

To investigate how close to the optimum the PBQP results
are, we implemented an alternative solving algorithm, which
uses brute force instead of heuristic reductions. Despite be-
ing surprisingly fast in our experiments, this approach does
not scale.

We compare heuristic with brute force decisions to identify
suboptimal ones. Table 2 shows the suboptimal reductions
count in the sub column. Only 2 out of 200 heuristic reduc-
tions chose a suboptimal alternative. Furthermore, heuris-
tic decisions are so rare (0.018%) compared to optimum-
preserving reductions that 99,99982% of all nodes are opti-
mally reduced. Therefore, the heuristic decisions seem not
to be the reason for the observed inferior code quality.

6. RELATED WORK
The PBQP was first used for register allocation [17, 29]

and is often [20, 25, 31] classified with approaches like integer
linear programming, since it can be used to find an optimal
solution. However, using heuristics the PBQP can still be
solved in linear time.

Later the PBQP was also applied to instruction selec-
tion [8, 9, 10]. While previous approaches were restricted
to trees [23] and can be extended to DAG-shaped program
graphs [13], the PBQP approach is more flexible as it also
allows patterns to be graphs. Various extensions [7, 19, 30]
show this flexibility by using DAG-shaped patterns to im-
plement instructions that produce multiple results. Also re-
materialization was introduced [19], which means selecting
multiple alternatives at once. These extensions are desir-
able for irregular architectures and custom instructions [21]

common in embedded systems. Our formalization provides
foundations to verify the correctness of these extensions.

7. FUTURE WORK
Current graph transformation tools are not optimized to

match lots of overlapping patterns. For a fast graph-based
instruction selection further research must either extend tree
pattern matchers or speed up graph pattern matchers in this
special case. Since pattern matching is a separate problem,
inspiration may come from various sources like subtree enu-
meration [1], BURS [24] or RETE [3].

Another remaining problem is to verify the various ex-
tensions of the PBQP approach mentioned in the previous
section. The challenge is to find appropriate preconditions
for the verification. Additionally, an interesting idea is to re-
fine these preconditions by employing knowledge about the
IR and the pattern set.

8. CONCLUSION
In this work we developed a formal foundation for graph-

based instruction selection, which is necessary to verify cor-
rectness. Using our formalization we identified and resolved
two problems with the known PBQP-based approach, which
highlights the need for verification and formalization.

Automatic rule generation eases the architecture specifi-
cation process. Our benchmark results show that a PBQP-
based approach yields code quality comparative to manually
fine-tuned instruction selections. Due to these two reasons
we believe that instruction selection should not be restricted
to tree shapes anymore. Also the execution times during
the development improved nearly exclusively because of ad-
ditional patterns. Hence, the most effective way to reduce
execution times seem to be more replacement options. This
also motivates to lift instruction selection from tree to graph
patterns.

9. ACKNOWLEDGMENTS
We would like to thank Matthias Braun, Jürgen Graf,

Martin Hecker, Denis Lohner, Christoph Mallon, Daniel
Wasserrab and all anonymous reviewers for their helpful
comments.

10. REFERENCES
[1] P. Biswas and G. Venkataramani. Comprehensive

isomorphic subtree enumeration. In CASES ’08:
Proceedings of the 2008 international conference on
Compilers, architectures and synthesis for embedded
systems, pages 177–186, New York, NY, USA, 2008.
ACM.

[2] S. Buchwald and A. Zwinkau. Befehlsauswahl auf
expliziten Abhängigkeitsgraphen. Master’s thesis,
Universität Karlsruhe (TH), IPD Goos, December
2008.

[3] H. Bunke, T. Glauser, and T. Tran. An efficient
implementation of graph grammars based on the
RETE matching algorithm. In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, Graph
Grammars and Their Application to Computer
Science, volume 532 of Lecture Notes in Computer
Science, chapter 17, pages 174–189. Springer-Verlag,
Berlin/Heidelberg, 1991.

[4] C. N. Click. Combining Analyses, Combining
Optimizations. PhD thesis, Rice University, February
1995.

[5] G. Cohen, J.-P. Quadrat, G. J. Olsder, and
F. Baccelli. Synchronization and linearity, an algebra
for discrete event systems, 1992.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490,
October 1991.

[7] D. Ebner, F. Brandner, B. Scholz, A. Krall,
P. Wiedermann, and A. Kadlec. Generalized
instruction selection using SSA-graphs. In LCTES ’08:
Proceedings of the 2008 ACM SIGPLAN-SIGBED
conference on Languages, compilers, and tools for
embedded systems, pages 31–40, New York, NY, USA,
2008. ACM.

[8] E. Eckstein. Code optimizations for digital signal
processors. PhD thesis, TU Wien, November 2003.

[9] E. Eckstein, O. König, and B. Scholz. Code
instruction selection based on SSA-graphs. In
SCOPES, pages 49–65, 2003.

[10] E. Eckstein and B. Scholz. Addressing mode selection.
In CGO ’03: Proceedings of the international
symposium on Code generation and optimization,
pages 337–346, Washington, DC, USA, 2003. IEEE
Computer Society.

[11] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An
EATCS Series). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[12] S. Eilenberg and S. MacLane. General theory of
natural equivalences. Transactions of the American
Mathematical Society, 58(2):231–294, 1945.

[13] M. A. Ertl. Optimal code selection in DAGs. In POPL
’99: Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 242–249, New York, NY, USA, 1999. ACM.

[14] C. W. Fraser, R. R. Henry, and T. A. Proebsting.
Burg: fast optimal instruction selection and tree
parsing. SIGPLAN Not., 27(4):68–76, 1992.

[15] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. M.
Szalkowski. GrGen: A fast SPO-based graph writing
tool. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, Graph
Transformations - ICGT 2006, Lecture Notes in
Computer Science, pages 383 – 397. Springer, 2006.
Natal, Brasil.

[16] A. Habel, R. Heckel, and G. Taentzer. Graph
grammars with negative application conditions.
Fundam. Inf., 26(3-4):287–313, 1996.

[17] L. Hames and B. Scholz. Nearly optimal register
allocation with PBQP. In D. E. Lightfoot and C. A.
Szyperski, editors, Modular Programming Languages,
7th Joint Modular Languages Conference, JMLC 2006,
Oxford, UK, September 13-15, 2006, Proceedings,
volume 4228 of Lecture Notes in Computer Science,
pages 346–361. Springer, 2006.

[18] R. Heckel. Graph transformation in a nutshell.

Electronic Notes in Theoretical Computer Science,
148(1):187–198, February 2006.

[19] H. Jakschitsch. Befehlsauswahl auf SSA-Graphen.
Master’s thesis, IPD Goos, November 2004.

[20] D. Koes and S. C. Goldstein. A progressive register
allocator for irregular architectures. In CGO ’05:
Proceedings of the international symposium on Code
generation and optimization, pages 269–280,
Washington, DC, USA, 2005. IEEE Computer Society.

[21] T. Li, Z. Sun, W. Jigang, and X. Lu. Fast enumeration
of maximal valid subgraphs for custom-instruction
identification. In CASES ’09: Proceedings of the 2009
international conference on Compilers, architecture,
and synthesis for embedded systems, pages 29–36, New
York, NY, USA, 2009. ACM.

[22] M. Löwe and H. Ehrig. Algebraic approach to graph
transformation based on single pushout derivations. In
WG ’90: Proceedings of the 16th international
workshop on Graph-theoretic concepts in computer
science, pages 338–353, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[23] A. Nymeyer and J.-P. Katoen. Code generation based
on formal burs theory and heuristic search. Acta
Informatica, 34(8):597–635, 1997.

[24] E. Pelegŕı-Llopart and S. L. Graham. Optimal code
generation for expression trees: an application BURS
theory. In POPL ’88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 294–308, New York,
NY, USA, 1988. ACM.

[25] F. M. Q. Pereira and J. Palsberg. Register allocation
by puzzle solving. SIGPLAN Not., 43(6):216–226,
2008.

[26] T. Proebsting. Least-cost instruction selection in
DAGs is NP-complete. Privately published online,
1998.

[27] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computations. In
POPL ’88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 12–27, New York, NY,
USA, 1988. ACM.

[28] G. Rozenberg, editor. Handbook of graph grammars
and computing by graph transformation: volume I.
foundations. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1997.

[29] B. Scholz and E. Eckstein. Register allocation for
irregular architectures. In LCTES-SCOPES, pages
139–148. ACM, 2002.

[30] A. Schösser. Graphersetzungsregelgewinnung aus
Hochsprachen und deren Anwendung. Master’s thesis,
Universität Karlsruhe (TH), IPD, 9 2007.

[31] M. D. Smith, N. Ramsey, and G. Holloway. A
generalized algorithm for graph-coloring register
allocation. In PLDI ’04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language
design and implementation, pages 277–288, New York,
NY, USA, 2004. ACM.

	Introduction
	Graph-based Instruction Selection
	Formal graph-foundations
	Covering a program graph
	Rewrite rules

	Selection with PBQP
	Partitioned Boolean Quadratic Problem
	Solving PBQP instances
	Construction of the PBQP graph

	Ensuring a PBQP Solution
	Conflicting decisions
	Overlapping patterns
	Verification
	Automatic rule generation

	Evaluation
	Related Work
	Future Work
	Conclusion
	Acknowledgments
	References

